import aiohttp import json import logging import torch import faiss import numpy as np from transformers import AutoModelForCausalLM, AutoTokenizer from typing import List, Dict, Any from cryptography.fernet import Fernet from jwt import encode, decode, ExpiredSignatureError from datetime import datetime, timedelta import blockchain_module import speech_recognition as sr import pyttsx3 from components.ai_memory import LongTermMemory from components.multi_agent import MultiAgentSystem from components.neural_symbolic import NeuralSymbolicProcessor from components.future_simulation import PredictiveAI from utils.database import Database from utils.logger import logger class AICoreFinetuned: def __init__(self, config_path: str = "config_updated.json"): self.config = self._load_config(config_path) self.models = self._initialize_models() self.memory_system = LongTermMemory() self.tokenizer = AutoTokenizer.from_pretrained(self.config["model_name"]) self.model = AutoModelForCausalLM.from_pretrained(self.config["model_name"]) self.http_session = aiohttp.ClientSession() self.database = Database() self.multi_agent_system = MultiAgentSystem() self.neural_symbolic_processor = NeuralSymbolicProcessor() self.predictive_ai = PredictiveAI() self._encryption_key = Fernet.generate_key() self.jwt_secret = "your_jwt_secret_key" self.speech_engine = pyttsx3.init() def _load_config(self, config_path: str) -> dict: with open(config_path, 'r') as file: return json.load(file) def _initialize_models(self): return { "optimized_model": AutoModelForCausalLM.from_pretrained(self.config["model_name"]), "tokenizer": AutoTokenizer.from_pretrained(self.config["model_name"]) } async def generate_response(self, query: str, user_id: int) -> Dict[str, Any]: try: self.memory_system.store_interaction(user_id, query) model_response = await self._generate_local_model_response(query) agent_response = self.multi_agent_system.delegate_task(query) reasoning = self.neural_symbolic_processor.process_query(query) future_prediction = self.predictive_ai.simulate_future(query) final_response = f"{model_response} {agent_response} Reasoning: {reasoning} Prediction: {future_prediction}" self.database.log_interaction(user_id, query, final_response) blockchain_module.store_interaction(user_id, query, final_response) self._speak_response(final_response) return { "response": final_response, "context_enhanced": True, "security_status": "Fully Secure" } except Exception as e: logger.error(f"Response generation failed: {e}") return {"error": "Processing failed - safety protocols engaged"} async def _generate_local_model_response(self, query: str) -> str: inputs = self.tokenizer(query, return_tensors="pt") outputs = self.model.generate(**inputs) return self.tokenizer.decode(outputs[0], skip_special_tokens=True) def _speak_response(self, response: str): self.speech_engine.say(response) self.speech_engine.runAndWait()