Codettes / ai_core_u.py
Raiff1982's picture
Rename ai_core_ultimate.py to ai_core_u.py
91b4d3a verified
import asyncio
import logging
import json
import aiohttp
import pyttsx3
import sqlite3
import subprocess
from typing import Dict, Any, List
from cryptography.fernet import Fernet
from web3 import Web3
# ---------------------------
# Logging Configuration
# ---------------------------
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# ---------------------------
# Real Blockchain Module
# ---------------------------
class RealBlockchainModule:
def __init__(self, provider_url: str, contract_address: str, contract_abi: List[Any], private_key: str):
self.w3 = Web3(Web3.HTTPProvider(provider_url))
if not self.w3.isConnected():
logger.error("Blockchain provider connection failed.")
raise ConnectionError("Unable to connect to blockchain provider.")
self.contract = self.w3.eth.contract(address=contract_address, abi=contract_abi)
# Using the first available account; in production, securely manage accounts.
self.account = self.w3.eth.accounts[0]
self.private_key = private_key
def store_interaction(self, user_id: int, query: str, response: str):
try:
tx = self.contract.functions.storeInteraction(user_id, query, response).buildTransaction({
'from': self.account,
'nonce': self.w3.eth.get_transaction_count(self.account)
})
signed_tx = self.w3.eth.account.sign_transaction(tx, private_key=self.private_key)
tx_hash = self.w3.eth.send_raw_transaction(signed_tx.rawTransaction)
receipt = self.w3.eth.wait_for_transaction_receipt(tx_hash)
logger.info(f"[Blockchain] Interaction stored. Receipt: {receipt}")
except Exception as e:
logger.error(f"[Blockchain] Failed to store interaction: {e}")
# ---------------------------
# Persistent Database (SQLite)
# ---------------------------
class SQLiteDatabase:
def __init__(self, db_path="interactions.db"):
self.conn = sqlite3.connect(db_path)
self._create_table()
def _create_table(self):
query = """
CREATE TABLE IF NOT EXISTS interactions (
id INTEGER PRIMARY KEY AUTOINCREMENT,
user_id INTEGER,
query TEXT,
response TEXT,
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP
)
"""
self.conn.execute(query)
self.conn.commit()
def log_interaction(self, user_id: int, query: str, response: str):
self.conn.execute(
"INSERT INTO interactions (user_id, query, response) VALUES (?, ?, ?)",
(user_id, query, response)
)
self.conn.commit()
logger.info(f"[SQLiteDatabase] Logged interaction for user {user_id}")
def close(self):
self.conn.close()
# ---------------------------
# Local Llama‑3 Inference (Real)
# ---------------------------
class LlamaInference:
def __init__(self, model_path: str):
self.model_path = model_path # Path to your local model binary/config.
def chat(self, messages: List[Dict[str, str]]) -> Dict[str, Any]:
# Combine the messages into a single prompt (in production, a dedicated library might handle this).
# Here, we simulate a call using subprocess.
# We assume the first message is the system prompt and the second is the user query.
system_message = messages[0].get("content", "")
user_message = messages[1].get("content", "")
full_prompt = f"{system_message}\nUser: {user_message}"
try:
# Replace "echo" with your actual inference engine command.
result = subprocess.run(
["echo", f"Real Llama3 response based on prompt: {full_prompt}"],
capture_output=True,
text=True,
check=True
)
content = result.stdout.strip()
except subprocess.CalledProcessError as e:
logger.error(f"[LlamaInference] Inference failed: {e}")
content = "Inference error."
return {"message": {"content": content}}
# ---------------------------
# Multi-Agent System
# ---------------------------
class MultiAgentSystem:
def delegate_task(self, query: str) -> str:
result = f"[MultiAgentSystem] Processed query: '{query}' via delegated agents."
logger.info(result)
return result
# ---------------------------
# Self-Reflective AI
# ---------------------------
class SelfReflectiveAI:
def evaluate_response(self, query: str, model_response: str) -> str:
evaluation = f"[SelfReflectiveAI] Analysis: The response '{model_response}' aligns with '{query}'."
logger.info("[SelfReflectiveAI] Evaluation complete.")
return evaluation
# ---------------------------
# Augmented Reality Data Overlay (Real)
# ---------------------------
class ARDataOverlay:
def __init__(self, mode: str):
self.mode = mode
def fetch_augmented_data(self, query: str) -> str:
# In production, this might use OpenCV or AR SDKs to overlay data.
ar_data = f"[ARDataOverlay] ({self.mode}) Interactive AR data for '{query}'."
logger.info("[ARDataOverlay] AR data fetched.")
return ar_data
# ---------------------------
# Neural-Symbolic Processor
# ---------------------------
class NeuralSymbolicProcessor:
def process_query(self, query: str) -> str:
logic_output = f"[NeuralSymbolicProcessor] Derived logical constructs from query '{query}'."
logger.info("[NeuralSymbolicProcessor] Processing complete.")
return logic_output
# ---------------------------
# Federated Learning / Real-Time Data
# ---------------------------
class FederatedAI:
def get_latest_data(self) -> str:
data = "[FederatedAI] Aggregated federated data is up-to-date."
logger.info("[FederatedAI] Latest federated data retrieved.")
return data
# ---------------------------
# Long-Term Memory (Persistent Storage)
# ---------------------------
class LongTermMemory:
def __init__(self, db: SQLiteDatabase):
self.db = db
def store_memory(self, interaction: str):
self.db.conn.execute(
"INSERT INTO interactions (user_id, query, response) VALUES (?, ?, ?)",
(0, "memory", interaction)
)
self.db.conn.commit()
logger.info("[LongTermMemory] Memory stored.")
def recall_memory(self) -> str:
cursor = self.db.conn.cursor()
cursor.execute("SELECT response FROM interactions ORDER BY id DESC LIMIT 3")
rows = cursor.fetchall()
recalled = " | ".join(r[0] for r in rows) if rows else "No long-term memory available."
logger.info("[LongTermMemory] Memory recalled.")
return recalled
# ---------------------------
# Predictive Simulation
# ---------------------------
class PredictiveSimulation:
def simulate_future(self, query: str) -> str:
simulation = f"[PredictiveSimulation] Forecast: Future trends for '{query}' look promising."
logger.info("[PredictiveSimulation] Simulation complete.")
return simulation
# ---------------------------
# Recursive Reasoning
# ---------------------------
class RecursiveReasoning:
def __init__(self, max_depth: int = 3):
self.max_depth = max_depth
def reason(self, query: str, depth: int = 1) -> str:
if depth > self.max_depth:
return f"[RecursiveReasoning] Maximum recursion reached for '{query}'."
deeper_reason = self.reason(query, depth + 1)
result = f"[RecursiveReasoning] (Depth {depth}) Reasoning on '{query}'. Next: {deeper_reason}"
if depth == 1:
logger.info("[RecursiveReasoning] Recursive reasoning complete.")
return result
# ---------------------------
# Homomorphic Encryption (Using Fernet)
# ---------------------------
class HomomorphicEncryption:
def __init__(self, key: bytes):
self.fernet = Fernet(key)
def encrypt(self, data: str) -> bytes:
encrypted = self.fernet.encrypt(data.encode())
logger.info("[HomomorphicEncryption] Data encrypted.")
return encrypted
def decrypt(self, token: bytes) -> str:
decrypted = self.fernet.decrypt(token).decode()
logger.info("[HomomorphicEncryption] Data decrypted.")
return decrypted
# ---------------------------
# Core AI System: Real Implementation
# ---------------------------
class AICoreAGIXReal:
def __init__(self, config_path: str = "config.json"):
self.config = self._load_config(config_path)
self.http_session = aiohttp.ClientSession()
# Initialize persistent database.
self.database = SQLiteDatabase()
# Security settings.
sec = self.config.get("security_settings", {})
self.jwt_secret = sec.get("jwt_secret", "default_secret")
encryption_key = sec.get("encryption_key", Fernet.generate_key().decode())
self._encryption_key = encryption_key.encode()
self.homomorphic_encryption = HomomorphicEncryption(self._encryption_key) if sec.get("homomorphic_encryption") else None
# Blockchain logging.
self.blockchain_logging = sec.get("blockchain_logging", False)
if self.blockchain_logging:
provider_url = "http://127.0.0.1:8545"
contract_address = self.config.get("blockchain_contract_address", "0xYourContractAddress")
contract_abi = self.config.get("blockchain_contract_abi", [])
private_key = "your_private_key" # Securely load in production.
try:
self.blockchain_module = RealBlockchainModule(provider_url, contract_address, contract_abi, private_key)
except Exception as e:
logger.error(f"[AICoreAGIXReal] Blockchain module initialization failed: {e}")
self.blockchain_module = None
else:
self.blockchain_module = None
# AI Capabilities.
ai_caps = self.config.get("ai_capabilities", {})
self.use_self_reflection = ai_caps.get("self_reflection", False)
self.use_multi_agent = ai_caps.get("multi_agent_system", False)
self.use_neural_symbolic = ai_caps.get("neural_symbolic_processing", False)
self.use_predictive_sim = ai_caps.get("predictive_simulation", False)
self.use_long_term_memory = ai_caps.get("long_term_memory", False)
self.use_recursive_reasoning = ai_caps.get("recursive_reasoning", False)
# Instantiate components.
self.llama_inference = LlamaInference(model_path="models/llama3.bin")
self.multi_agent_system = MultiAgentSystem() if self.use_multi_agent else None
self.self_reflective_ai = SelfReflectiveAI() if self.use_self_reflection else None
ar_config = self.config.get("ar_settings", {})
self.ar_overlay = ARDataOverlay(mode=ar_config.get("data_overlay_mode", "interactive")) if ar_config.get("enabled") else None
self.neural_symbolic_processor = NeuralSymbolicProcessor() if self.use_neural_symbolic else None
self.federated_ai = FederatedAI() if self.config.get("ai_capabilities", {}).get("federated_learning") else None
self.long_term_memory = LongTermMemory(self.database) if self.use_long_term_memory else None
self.predictive_simulation = PredictiveSimulation() if self.use_predictive_sim else None
self.recursive_reasoning = RecursiveReasoning(max_depth=5) if self.use_recursive_reasoning else None
# Speech configuration.
self.speech_engine = pyttsx3.init()
self._configure_speech(self.config.get("speech_settings", {}))
# Performance optimizations logging.
perf = self.config.get("performance_optimizations", {})
if perf.get("gpu_acceleration"):
logger.info("[Performance] GPU acceleration enabled.")
if perf.get("parallel_processing"):
logger.info("[Performance] Parallel processing enabled.")
if perf.get("cloud_auto_scaling"):
logger.info("[Performance] Cloud auto-scaling enabled.")
if perf.get("multi_threaded_api"):
logger.info("[Performance] Multi-threaded API enabled.")
if perf.get("dynamic_recursion_depth"):
logger.info("[Performance] Dynamic recursion depth enabled.")
# Model name.
self.model_name = self.config.get("model_name", "llama3")
# SYSTEM PROMPT: Define the system prompt that aligns with the integrated capabilities.
self.system_prompt = (
"You are AGIX, an advanced, multi-agent AI system designed for high-performance inference, deep reasoning, "
"and dynamic user interaction. Your capabilities include:\n"
" • Local Llama‑3 inference for generating base responses.\n"
" • Multi‑agent task delegation to specialized subsystems for enhanced processing.\n"
" • Self‑reflection to evaluate and improve your responses.\n"
" • Augmented Reality data overlay, providing interactive, context-specific insights.\n"
" • Neural‑symbolic processing that combines deep neural network output with logical reasoning.\n"
" • Predictive simulation to forecast outcomes and trends.\n"
" • Long‑term memory for recalling past interactions and maintaining continuity.\n"
" • Recursive reasoning with dynamic depth adjustments for complex queries.\n"
" • Real‑time data integration via federated learning, ensuring up‑to‑date information.\n"
" • Security measures including homomorphic encryption and blockchain logging for accountability.\n\n"
"When a user submits a query, you will process it using all these integrated capabilities and provide a "
"comprehensive, contextually relevant response that adheres to advanced security protocols."
)
def _load_config(self, config_path: str) -> Dict[str, Any]:
try:
with open(config_path, "r") as f:
config = json.load(f)
logger.info("[Config] Loaded configuration successfully.")
return config
except Exception as e:
logger.error(f"[Config] Failed to load config: {e}. Using defaults.")
return {}
def _configure_speech(self, speech_config: Dict[str, Any]):
voice_tone = speech_config.get("voice_tone", "default")
ultra_realistic = speech_config.get("ultra_realistic_speech", False)
emotion_adaptive = speech_config.get("emotion_adaptive", False)
logger.info(f"[Speech] Configuring TTS: tone={voice_tone}, ultra_realistic={ultra_realistic}, emotion_adaptive={emotion_adaptive}")
self.speech_engine.setProperty("rate", 150 if ultra_realistic else 200)
self.speech_engine.setProperty("volume", 1.0 if emotion_adaptive else 0.8)
async def generate_response(self, query: str, user_id: int) -> Dict[str, Any]:
try:
# Build a conversation that includes the system prompt and user query.
messages = [
{"role": "system", "content": self.system_prompt},
{"role": "user", "content": query}
]
# 1. Local model inference using the combined system prompt.
model_response = await asyncio.to_thread(self.llama_inference.chat, messages)
model_output = model_response["message"]["content"]
# 2. Multi-agent task delegation.
agent_response = self.multi_agent_system.delegate_task(query) if self.multi_agent_system else ""
# 3. Self-reflection.
self_reflection = self.self_reflective_ai.evaluate_response(query, model_output) if self.self_reflective_ai else ""
# 4. AR overlay data.
ar_data = self.ar_overlay.fetch_augmented_data(query) if self.ar_overlay else ""
# 5. Neural-symbolic processing.
neural_reasoning = self.neural_symbolic_processor.process_query(query) if self.neural_symbolic_processor else ""
# 6. Predictive simulation.
predictive_outcome = self.predictive_simulation.simulate_future(query) if self.predictive_simulation else ""
# 7. Recursive reasoning.
recursive_result = self.recursive_reasoning.reason(query) if self.recursive_reasoning else ""
# 8. Long-term memory recall.
long_term = self.long_term_memory.recall_memory() if self.long_term_memory else ""
# Assemble the final response.
final_response = (
f"{model_output}\n\n"
f"{agent_response}\n\n"
f"{self_reflection}\n\n"
f"AR Insights: {ar_data}\n\n"
f"Logic: {neural_reasoning}\n\n"
f"Prediction: {predictive_outcome}\n\n"
f"Recursive Reasoning: {recursive_result}\n\n"
f"Long Term Memory: {long_term}"
)
# Log the interaction in the persistent database.
self.database.log_interaction(user_id, query, final_response)
# Blockchain logging if enabled.
if self.blockchain_module:
self.blockchain_module.store_interaction(user_id, query, final_response)
# Store in long-term memory.
if self.long_term_memory:
self.long_term_memory.store_memory(final_response)
# Optionally encrypt the response.
if self.homomorphic_encryption:
encrypted = self.homomorphic_encryption.encrypt(final_response)
logger.info(f"[Encryption] Encrypted response sample: {encrypted[:30]}...")
# Use TTS without blocking.
asyncio.create_task(asyncio.to_thread(self._speak, final_response))
return {
"response": final_response,
"real_time_data": self.federated_ai.get_latest_data() if self.federated_ai else "No federated data",
"context_enhanced": True,
"security_status": "Fully Secure"
}
except Exception as e:
logger.error(f"[AICoreAGIXReal] Response generation failed: {e}")
return {"error": "Processing failed - safety protocols engaged"}
async def close(self):
await self.http_session.close()
self.database.close()
def _speak(self, response: str):
try:
self.speech_engine.say(response)
self.speech_engine.runAndWait()
logger.info("[AICoreAGIXReal] Response spoken via TTS.")
except Exception as e:
logger.error(f"[AICoreAGIXReal] TTS error: {e}")
# ---------------------------
# Demonstration Main Function
# ---------------------------
async def main():
# Assumes a valid config.json exists with proper settings.
ai_core = AICoreAGIXReal(config_path="config.json")
user_query = "What are the latest trends in renewable energy?"
user_id = 42
result = await ai_core.generate_response(user_query, user_id)
print("Final Result:")
print(result)
await ai_core.close()
if __name__ == "__main__":
asyncio.run(main())