|
import aiohttp |
|
import json |
|
import logging |
|
import torch |
|
import faiss |
|
import numpy as np |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from typing import List, Dict, Any |
|
from cryptography.fernet import Fernet |
|
from jwt import encode, decode, ExpiredSignatureError |
|
from datetime import datetime, timedelta |
|
import blockchain_module |
|
import speech_recognition as sr |
|
import pyttsx3 |
|
|
|
from components.agix_reflection import SelfReflectiveAI |
|
from components.multi_agent import MultiAgentSystem |
|
from components.ar_integration import ARDataOverlay |
|
from components.neural_symbolic import NeuralSymbolicProcessor |
|
from components.federated_learning import FederatedAI |
|
from utils.database import Database |
|
from utils.logger import logger |
|
|
|
class AICoreAGIX: |
|
def __init__(self, config_path: str = "config.json"): |
|
self.config = self._load_config(config_path) |
|
self.models = self._initialize_models() |
|
self.context_memory = self._initialize_vector_memory() |
|
self.tokenizer = AutoTokenizer.from_pretrained(self.config["model_name"]) |
|
self.model = AutoModelForCausalLM.from_pretrained(self.config["model_name"]) |
|
self.http_session = aiohttp.ClientSession() |
|
self.database = Database() |
|
self.multi_agent_system = MultiAgentSystem() |
|
self.self_reflective_ai = SelfReflectiveAI() |
|
self.ar_overlay = ARDataOverlay() |
|
self.neural_symbolic_processor = NeuralSymbolicProcessor() |
|
self.federated_ai = FederatedAI() |
|
self._encryption_key = Fernet.generate_key() |
|
self.jwt_secret = "your_jwt_secret_key" |
|
self.speech_engine = pyttsx3.init() |
|
|
|
def _load_config(self, config_path: str) -> dict: |
|
with open(config_path, 'r') as file: |
|
return json.load(file) |
|
|
|
def _initialize_models(self): |
|
return { |
|
"agix_model": AutoModelForCausalLM.from_pretrained(self.config["model_name"]), |
|
"tokenizer": AutoTokenizer.from_pretrained(self.config["model_name"]) |
|
} |
|
|
|
def _initialize_vector_memory(self): |
|
return faiss.IndexFlatL2(768) |
|
|
|
async def generate_response(self, query: str, user_id: int) -> Dict[str, Any]: |
|
try: |
|
vectorized_query = self._vectorize_query(query) |
|
self.context_memory.add(np.array([vectorized_query])) |
|
|
|
model_response = await self._generate_local_model_response(query) |
|
agent_response = self.multi_agent_system.delegate_task(query) |
|
self_reflection = self.self_reflective_ai.evaluate_response(query, model_response) |
|
ar_data = self.ar_overlay.fetch_augmented_data(query) |
|
neural_reasoning = self.neural_symbolic_processor.process_query(query) |
|
|
|
final_response = f"{model_response} |
|
|
|
{agent_response} |
|
|
|
{self_reflection} |
|
|
|
AR Insights: {ar_data} |
|
|
|
Logic: {neural_reasoning}" |
|
self.database.log_interaction(user_id, query, final_response) |
|
blockchain_module.store_interaction(user_id, query, final_response) |
|
self._speak_response(final_response) |
|
|
|
return { |
|
"response": final_response, |
|
"real_time_data": self.federated_ai.get_latest_data(), |
|
"context_enhanced": True, |
|
"security_status": "Fully Secure" |
|
} |
|
except Exception as e: |
|
logger.error(f"Response generation failed: {e}") |
|
return {"error": "Processing failed - safety protocols engaged"} |
|
|
|
def _vectorize_query(self, query: str): |
|
tokenized = self.tokenizer(query, return_tensors="pt") |
|
return tokenized["input_ids"].detach().numpy() |
|
|
|
async def _generate_local_model_response(self, query: str) -> str: |
|
inputs = self.tokenizer(query, return_tensors="pt") |
|
outputs = self.model.generate(**inputs) |
|
return self.tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
def _speak_response(self, response: str): |
|
self.speech_engine.say(response) |
|
self.speech_engine.runAndWait() |
|
|