Rahul040202 commited on
Commit
9f1dfb4
·
1 Parent(s): 33ab1a7

first commit

Browse files
Files changed (2) hide show
  1. app.py +77 -149
  2. requirements.txt +4 -4
app.py CHANGED
@@ -1,154 +1,82 @@
 
1
  import gradio as gr
2
- import numpy as np
3
- import random
4
-
5
- # import spaces #[uncomment to use ZeroGPU]
6
  from diffusers import DiffusionPipeline
7
- import torch
8
-
9
- device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
11
-
12
- if torch.cuda.is_available():
13
- torch_dtype = torch.float16
14
- else:
15
- torch_dtype = torch.float32
16
-
17
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
18
- pipe = pipe.to(device)
19
-
20
- MAX_SEED = np.iinfo(np.int32).max
21
- MAX_IMAGE_SIZE = 1024
22
-
23
-
24
- # @spaces.GPU #[uncomment to use ZeroGPU]
25
- def infer(
26
- prompt,
27
- negative_prompt,
28
- seed,
29
- randomize_seed,
30
- width,
31
- height,
32
- guidance_scale,
33
- num_inference_steps,
34
- progress=gr.Progress(track_tqdm=True),
35
- ):
36
- if randomize_seed:
37
- seed = random.randint(0, MAX_SEED)
38
-
39
- generator = torch.Generator().manual_seed(seed)
40
-
41
- image = pipe(
42
- prompt=prompt,
43
- negative_prompt=negative_prompt,
44
- guidance_scale=guidance_scale,
45
- num_inference_steps=num_inference_steps,
46
- width=width,
47
- height=height,
48
- generator=generator,
49
- ).images[0]
50
-
51
- return image, seed
52
-
53
-
54
- examples = [
55
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
- "An astronaut riding a green horse",
57
- "A delicious ceviche cheesecake slice",
58
- ]
59
-
60
- css = """
61
- #col-container {
62
- margin: 0 auto;
63
- max-width: 640px;
64
- }
65
  """
66
 
67
- with gr.Blocks(css=css) as demo:
68
- with gr.Column(elem_id="col-container"):
69
- gr.Markdown(" # Text-to-Image Gradio Template")
70
-
71
- with gr.Row():
72
- prompt = gr.Text(
73
- label="Prompt",
74
- show_label=False,
75
- max_lines=1,
76
- placeholder="Enter your prompt",
77
- container=False,
78
- )
79
-
80
- run_button = gr.Button("Run", scale=0, variant="primary")
81
-
82
- result = gr.Image(label="Result", show_label=False)
83
-
84
- with gr.Accordion("Advanced Settings", open=False):
85
- negative_prompt = gr.Text(
86
- label="Negative prompt",
87
- max_lines=1,
88
- placeholder="Enter a negative prompt",
89
- visible=False,
90
- )
91
-
92
- seed = gr.Slider(
93
- label="Seed",
94
- minimum=0,
95
- maximum=MAX_SEED,
96
- step=1,
97
- value=0,
98
- )
99
-
100
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
101
-
102
- with gr.Row():
103
- width = gr.Slider(
104
- label="Width",
105
- minimum=256,
106
- maximum=MAX_IMAGE_SIZE,
107
- step=32,
108
- value=1024, # Replace with defaults that work for your model
109
- )
110
-
111
- height = gr.Slider(
112
- label="Height",
113
- minimum=256,
114
- maximum=MAX_IMAGE_SIZE,
115
- step=32,
116
- value=1024, # Replace with defaults that work for your model
117
- )
118
-
119
- with gr.Row():
120
- guidance_scale = gr.Slider(
121
- label="Guidance scale",
122
- minimum=0.0,
123
- maximum=10.0,
124
- step=0.1,
125
- value=0.0, # Replace with defaults that work for your model
126
- )
127
-
128
- num_inference_steps = gr.Slider(
129
- label="Number of inference steps",
130
- minimum=1,
131
- maximum=50,
132
- step=1,
133
- value=2, # Replace with defaults that work for your model
134
- )
135
-
136
- gr.Examples(examples=examples, inputs=[prompt])
137
- gr.on(
138
- triggers=[run_button.click, prompt.submit],
139
- fn=infer,
140
- inputs=[
141
- prompt,
142
- negative_prompt,
143
- seed,
144
- randomize_seed,
145
- width,
146
- height,
147
- guidance_scale,
148
- num_inference_steps,
149
- ],
150
- outputs=[result, seed],
151
- )
152
-
153
  if __name__ == "__main__":
154
- demo.launch()
 
1
+ import torch
2
  import gradio as gr
 
 
 
 
3
  from diffusers import DiffusionPipeline
4
+ from PIL import Image, ImageDraw, ImageFont
5
+
6
+ # Initialize the model globally for faster inference
7
+ pipe = None
8
+
9
+ def load_model():
10
+ global pipe
11
+ if pipe is None:
12
+ pipe = DiffusionPipeline.from_pretrained("segmind/tiny-sd", torch_dtype=torch.float32)
13
+ pipe = pipe.to("cpu")
14
+ return pipe
15
+
16
+ def generate_image_with_text(prompt, caption_text):
17
+ """
18
+ Generate an image based on a text prompt and add simple text with border at the bottom
19
+ """
20
+ # Ensure model is loaded
21
+ pipe = load_model()
22
+
23
+ # Generate image
24
+ image = pipe(prompt, num_inference_steps=20, height=384, width=384).images[0]
25
+
26
+ # Add space for text at bottom
27
+ width, height = image.size
28
+ new_img = Image.new("RGB", (width, height + 40), (0, 0, 0))
29
+ new_img.paste(image, (0, 0))
30
+
31
+ # Add text with border
32
+ draw = ImageDraw.Draw(new_img)
33
+
34
+ # Use default font
35
+ font = ImageFont.load_default()
36
+
37
+ # Calculate text position to center it
38
+ text_width = draw.textlength(caption_text, font=font)
39
+ text_x = (width - text_width) / 2
40
+ text_y = height + 10
41
+
42
+ # Draw text border (offset in 4 directions)
43
+ offset = 1 # Border thickness
44
+ for dx, dy in [(-offset, -offset), (-offset, offset), (offset, -offset), (offset, offset),
45
+ (0, -offset), (0, offset), (-offset, 0), (offset, 0)]:
46
+ draw.text((text_x + dx, text_y + dy), caption_text, fill=(0, 0, 0), font=font)
47
+
48
+ # Draw main text in white
49
+ draw.text((text_x, text_y), caption_text, fill=(255, 255, 255), font=font)
50
+
51
+ return new_img
52
+
53
+ # Create Gradio interface
54
+ title = "Text-to-Image Generator with Caption"
55
+ description = """
56
+ Generate an image from a text prompt and add a caption at the bottom.
57
+ The model used is lightweight and runs on CPU.
 
 
 
 
58
  """
59
 
60
+ demo = gr.Interface(
61
+ fn=generate_image_with_text,
62
+ inputs=[
63
+ gr.Textbox(label="Image Prompt", placeholder="Describe the image you want to generate..."),
64
+ gr.Textbox(label="Caption Text", placeholder="Text to display at the bottom of the image")
65
+ ],
66
+ outputs=gr.Image(type="pil", label="Generated Image"),
67
+ title=title,
68
+ description=description,
69
+ examples=[
70
+ ["A serene mountain landscape at sunset", "Beautiful Sunset View"],
71
+ ["A cute cat playing with yarn", "Playful Kitten"],
72
+ ["Abstract colorful shapes", "Modern Art"]
73
+ ],
74
+ cache_examples=False,
75
+ )
76
+
77
+ # Load the model when the app starts
78
+ load_model()
79
+
80
+ # Launch the app
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81
  if __name__ == "__main__":
82
+ demo.launch()
requirements.txt CHANGED
@@ -1,6 +1,6 @@
1
- accelerate
2
- diffusers
3
- invisible_watermark
4
  torch
 
5
  transformers
6
- xformers
 
 
 
 
 
 
1
  torch
2
+ diffusers
3
  transformers
4
+ gradio
5
+ pillow
6
+ accelerate