File size: 4,709 Bytes
9b5b26a c19d193 6aae614 8fe992b 9b5b26a 2aa7c97 d3f08c6 2aa7c97 5b0b847 38d2250 2aa7c97 5b0b847 2aa7c97 9b5b26a 55406e9 9b5b26a 2aa7c97 9b5b26a 2aa7c97 9b5b26a 2aa7c97 9b5b26a 08bbcc6 55406e9 08bbcc6 9b5b26a 8c01ffb 6aae614 486ab5d ae7a494 ed3beea ae7a494 e121372 bf6d34c ed3beea fe328e0 13d500a 8c01ffb 9b5b26a 8c01ffb 861422e 76ea624 8c01ffb 8fe992b 1a77a6c 8c01ffb 8500fc9 8fe992b 9b5b26a 8c01ffb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
import datetime
import requests
import pytz
import yaml
from tools.final_answer import FinalAnswerTool
from Gradio_UI import GradioUI
from googleapiclient.discovery import build
import os
from dotenv import load_dotenv
import uuid
# Google Books API setup with Service Account
json_key_path: str = "/app/audiobookagent-aaf910cd6329.json" # Adjust path for Hugging Face Spaces
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = json_key_path
credentials = service_account.Credentials.from_service_account_file(
json_key_path,
scopes=["https://www.googleapis.com/auth/books"]
)
books_service = build("books", "v1", credentials=credentials)
# I want to try connect to a google API to get some recommendation of audiobooks!
@tool
def search_audiobooks(topic: str, limit: int = 3)-> list[dict[str, any]]: #it's import to specify the return type
#Keep this format for the description / args / args description but feel free to modify the tool
"""The tool is designed to connect to the google API platform and retrieve some audiobooks recommendations
Args:
topic: the topic that I would like to use to retieve some audiobooks
limit: it is a constant as I want to recommend only three audiobooks
"""
request = books_service.volumes().list(
q=f"subject:{topic}+audiobook",
maxResults=limit,
printType="books",
gl="us"
)
response = request.execute()
audiobooks = []
for item in response.get("items", []):
volume_info = item.get("volumeInfo", {})
# Check if audiobook (based on categories or accessInfo)
if "Audiobook" in volume_info.get("categories", []) or volume_info.get("accessInfo", {}).get("epub", {}).get("isAvailable", False):
audiobooks.append({
"title": volume_info.get("title", "Unknown"),
"author": ", ".join(volume_info.get("authors", ["Unknown"])),
"categories": ", ".join(volume_info.get("categories", ["Unknown"])),
"url": volume_info.get("canonicalVolumeLink", "#"),
"estimated_minutes": volume_info.get("pageCount", 180) # Estimate: 1 page ≈ 1 minute
})
return audiobooks
@tool
# Function to estimate if audiobook fits time constraint
def filter_by_time(audiobooks: list[dict[str, any]], free_time: str) -> list[dict[str, any]]:
"""The tool is designed to match the time in terms of duration of the audiobook which is called estimated_minutes and the free time that the person have
Args:
audiobooks: the list of the audiobooks
free_time: The free time the person inform
"""
try:
if "hour" in free_time.lower():
hours = float(free_time.split()[0])
max_minutes = hours * 60
else:
max_minutes = float(free_time.split()[0])
except:
max_minutes = 180 # Default to 3 hours
return [book for book in audiobooks if book["estimated_minutes"] <= max_minutes]
@tool
def get_current_time_in_timezone(timezone: str) -> str:
"""A tool that fetches the current local time in a specified timezone.
Args:
timezone: A string representing a valid timezone (e.g., 'America/New_York').
"""
try:
# Create timezone object
tz = pytz.timezone(timezone)
# Get current time in that timezone
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
return f"The current local time in {timezone} is: {local_time}"
except Exception as e:
return f"Error fetching time for timezone '{timezone}': {str(e)}"
final_answer = FinalAnswerTool()
# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud'
model = HfApiModel(
max_tokens=2096,
temperature=0.5,
#model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded
custom_role_conversions=None,
)
# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
with open("prompts.yaml", 'r') as stream:
prompt_templates = yaml.safe_load(stream)
agent = CodeAgent(
model=model,
tools=[search_audiobooks,get_current_time_in_timezone,filter_by_time,final_answer], ## add your tools here (don't remove final answer)
max_steps=6,
verbosity_level=1,
grammar=None,
planning_interval=None,
name=None,
description=None,
prompt_templates=prompt_templates
)
GradioUI(agent).launch() |