import os import torch import torchaudio import spaces from transformers import WhisperProcessor, WhisperForConditionalGeneration # Create directories os.makedirs("transcriptions", exist_ok=True) # Initialize global models whisper_model = None whisper_processor = None # Model configurations WHISPER_MODEL_SIZES = { 'tiny': 'openai/whisper-tiny', 'base': 'openai/whisper-base', 'small': 'openai/whisper-small', 'medium': 'openai/whisper-medium', 'large': 'openai/whisper-large-v3', } # Synchronous function with GPU decorator @spaces.GPU def _transcribe_audio_gpu(audio_file_path, model_size="base", language="en"): global whisper_model, whisper_processor try: # Get model identifier model_id = WHISPER_MODEL_SIZES.get(model_size.lower(), WHISPER_MODEL_SIZES['base']) # Load model and processor on first use or if model size changes if whisper_model is None or whisper_processor is None or (whisper_model and whisper_model.config._name_or_path != model_id): print(f"Loading Whisper {model_size} model...") whisper_processor = WhisperProcessor.from_pretrained(model_id) whisper_model = WhisperForConditionalGeneration.from_pretrained(model_id) print(f"Model loaded on device: {whisper_model.device}") # Process audio speech_array, sample_rate = torchaudio.load(audio_file_path) # Convert to mono if needed if speech_array.shape[0] > 1: speech_array = torch.mean(speech_array, dim=0, keepdim=True) # Resample to 16kHz if needed if sample_rate != 16000: resampler = torchaudio.transforms.Resample(sample_rate, 16000) speech_array = resampler(speech_array) # Prepare inputs for the model input_features = whisper_processor( speech_array.squeeze().numpy(), sampling_rate=16000, return_tensors="pt" ).input_features # Generate transcription generation_kwargs = {} if language: forced_decoder_ids = whisper_processor.get_decoder_prompt_ids(language=language, task="transcribe") generation_kwargs["forced_decoder_ids"] = forced_decoder_ids # Run the model with torch.no_grad(): predicted_ids = whisper_model.generate(input_features, **generation_kwargs) # Decode the output transcription = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True) # Return the transcribed text return transcription[0] except Exception as e: print(f"Error during transcription: {str(e)}") return "" # Async wrapper that calls the GPU function async def transcribe_audio(audio_file_path, model_size="base", language="en"): # Call the GPU-decorated function return _transcribe_audio_gpu(audio_file_path, model_size, language)