Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,20 +1,13 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
-
from fastrtc import Stream,
|
|
|
4 |
|
5 |
# Import your custom models
|
6 |
from tts import tortoise_tts, TortoiseOptions
|
7 |
from stt import whisper_stt
|
8 |
import cohereAPI
|
9 |
|
10 |
-
# Try to import HumAware-VAD, install if not available
|
11 |
-
try:
|
12 |
-
from humaware_vad import HumAwareVADModel
|
13 |
-
except ImportError:
|
14 |
-
print("Installing humaware-vad...")
|
15 |
-
subprocess.check_call([sys.executable, "-m", "pip", "install", "humaware-vad"])
|
16 |
-
from humaware_vad import HumAwareVADModel
|
17 |
-
|
18 |
# Environment variables
|
19 |
COHERE_API_KEY = os.getenv("COHERE_API_KEY")
|
20 |
system_message = "You respond concisely, in about 15 words or less"
|
@@ -22,9 +15,6 @@ system_message = "You respond concisely, in about 15 words or less"
|
|
22 |
# Initialize conversation history
|
23 |
conversation_history = []
|
24 |
|
25 |
-
# Initialize the HumAware-VAD model
|
26 |
-
vad_model = HumAwareVADModel()
|
27 |
-
|
28 |
# Create a handler function that uses both your custom models
|
29 |
def response(audio):
|
30 |
global conversation_history
|
@@ -32,7 +22,7 @@ def response(audio):
|
|
32 |
# Convert speech to text using your Whisper model
|
33 |
user_message = whisper_stt.stt(audio)
|
34 |
|
35 |
-
# Yield the transcription
|
36 |
yield AdditionalOutputs(user_message)
|
37 |
|
38 |
# Send text to Cohere API
|
@@ -56,18 +46,21 @@ def response(audio):
|
|
56 |
for chunk in tortoise_tts.stream_tts_sync(response_text, tts_options):
|
57 |
yield chunk
|
58 |
|
59 |
-
# Create the FastRTC stream with
|
60 |
stream = Stream(
|
61 |
-
handler=
|
62 |
modality="audio",
|
63 |
mode="send-receive",
|
64 |
additional_outputs=[gr.Textbox(label="Transcription")],
|
65 |
-
additional_outputs_handler=lambda old, new: new if old is None else f"{old}\nUser: {new}"
|
|
|
|
|
|
|
|
|
66 |
)
|
67 |
|
68 |
# Launch the Gradio UI
|
69 |
if __name__ == "__main__":
|
70 |
-
# Update your requirements.txt to include humaware-vad
|
71 |
stream.ui.launch(
|
72 |
server_name="0.0.0.0",
|
73 |
share=False,
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
+
from fastrtc import Stream, AdditionalOutputs
|
4 |
+
from fastrtc_walkie_talkie import WalkieTalkie
|
5 |
|
6 |
# Import your custom models
|
7 |
from tts import tortoise_tts, TortoiseOptions
|
8 |
from stt import whisper_stt
|
9 |
import cohereAPI
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
# Environment variables
|
12 |
COHERE_API_KEY = os.getenv("COHERE_API_KEY")
|
13 |
system_message = "You respond concisely, in about 15 words or less"
|
|
|
15 |
# Initialize conversation history
|
16 |
conversation_history = []
|
17 |
|
|
|
|
|
|
|
18 |
# Create a handler function that uses both your custom models
|
19 |
def response(audio):
|
20 |
global conversation_history
|
|
|
22 |
# Convert speech to text using your Whisper model
|
23 |
user_message = whisper_stt.stt(audio)
|
24 |
|
25 |
+
# Yield the transcription as additional output
|
26 |
yield AdditionalOutputs(user_message)
|
27 |
|
28 |
# Send text to Cohere API
|
|
|
46 |
for chunk in tortoise_tts.stream_tts_sync(response_text, tts_options):
|
47 |
yield chunk
|
48 |
|
49 |
+
# Create the FastRTC stream with WalkieTalkie for turn detection
|
50 |
stream = Stream(
|
51 |
+
handler=WalkieTalkie(response), # Use WalkieTalkie instead of ReplyOnPause
|
52 |
modality="audio",
|
53 |
mode="send-receive",
|
54 |
additional_outputs=[gr.Textbox(label="Transcription")],
|
55 |
+
additional_outputs_handler=lambda old, new: new if old is None else f"{old}\nUser: {new}",
|
56 |
+
ui_args={
|
57 |
+
"title": "Voice Assistant (Walkie-Talkie Style)",
|
58 |
+
"subtitle": "Say 'over' to finish your turn. For example, 'What's the weather like today? over.'"
|
59 |
+
}
|
60 |
)
|
61 |
|
62 |
# Launch the Gradio UI
|
63 |
if __name__ == "__main__":
|
|
|
64 |
stream.ui.launch(
|
65 |
server_name="0.0.0.0",
|
66 |
share=False,
|