Spaces:
Build error
Build error
# stt.py | |
import os | |
import torch | |
import torchaudio | |
import spaces | |
import numpy as np | |
from typing import Tuple | |
from numpy.typing import NDArray | |
from transformers import WhisperProcessor, WhisperForConditionalGeneration | |
import tempfile | |
# Create directories | |
os.makedirs("transcriptions", exist_ok=True) | |
# Initialize global models | |
whisper_model = None | |
whisper_processor = None | |
# Model configurations | |
WHISPER_MODEL_SIZES = { | |
'tiny': 'openai/whisper-tiny', | |
'base': 'openai/whisper-base', | |
'small': 'openai/whisper-small', | |
'medium': 'openai/whisper-medium', | |
'large': 'openai/whisper-large-v3', | |
} | |
class WhisperSTTModel: | |
def __init__(self, model_size="base", language="en"): | |
self.model_size = model_size | |
self.language = language | |
self._initialize_model() | |
def _initialize_model(self): | |
global whisper_model, whisper_processor | |
# Get model identifier | |
model_id = WHISPER_MODEL_SIZES.get(self.model_size.lower(), WHISPER_MODEL_SIZES['base']) | |
# Load model and processor if not already loaded | |
if whisper_model is None or whisper_processor is None or (whisper_model and whisper_model.config._name_or_path != model_id): | |
print(f"Loading Whisper {self.model_size} model...") | |
whisper_processor = WhisperProcessor.from_pretrained(model_id) | |
whisper_model = WhisperForConditionalGeneration.from_pretrained(model_id) | |
print(f"Model loaded on device: {whisper_model.device}") | |
def stt(self, audio: Tuple[int, NDArray[np.float32]]) -> str: | |
"""Transcribe audio to text following the STTModel protocol""" | |
sample_rate, audio_array = audio | |
try: | |
# Convert to mono if needed | |
if len(audio_array.shape) > 1 and audio_array.shape[0] > 1: | |
audio_array = np.mean(audio_array, axis=0) | |
# Convert numpy array to torch tensor | |
speech_array = torch.tensor(audio_array).unsqueeze(0) | |
# Resample to 16kHz if needed | |
if sample_rate != 16000: | |
resampler = torchaudio.transforms.Resample(sample_rate, 16000) | |
speech_array = resampler(speech_array) | |
# Prepare inputs for the model | |
input_features = whisper_processor( | |
speech_array.squeeze().numpy(), | |
sampling_rate=16000, | |
return_tensors="pt" | |
).input_features | |
# Generate transcription | |
generation_kwargs = {} | |
if self.language: | |
forced_decoder_ids = whisper_processor.get_decoder_prompt_ids(language=self.language, task="transcribe") | |
generation_kwargs["forced_decoder_ids"] = forced_decoder_ids | |
# Run the model | |
with torch.no_grad(): | |
predicted_ids = whisper_model.generate(input_features, **generation_kwargs) | |
# Decode the output | |
transcription = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True) | |
# Return the transcribed text | |
return transcription[0] | |
except Exception as e: | |
print(f"Error during transcription: {str(e)}") | |
return "" | |
# Create a singleton instance for easy import | |
whisper_stt = WhisperSTTModel(model_size="base", language="en") | |
# Legacy function for backward compatibility | |
async def transcribe_audio(audio_file_path, model_size="base", language="en"): | |
"""For compatibility with older code""" | |
# Load audio from file | |
speech_array, sample_rate = torchaudio.load(audio_file_path) | |
# Use the new model to transcribe | |
return whisper_stt.stt((sample_rate, speech_array.squeeze().numpy())) |