Command_RTC / stt.py
RSHVR's picture
Create stt.py
836c8e6 verified
raw
history blame
2.83 kB
import os
import torch
import torchaudio
import spaces # Import spaces module for Zero-GPU
from transformers import WhisperProcessor, WhisperForConditionalGeneration
# Create directories
os.makedirs("transcriptions", exist_ok=True)
# Initialize global models
whisper_model = None
whisper_processor = None
# Model configurations
WHISPER_MODEL_SIZES = {
'tiny': 'openai/whisper-tiny',
'base': 'openai/whisper-base',
'small': 'openai/whisper-small',
'medium': 'openai/whisper-medium',
'large': 'openai/whisper-large-v3',
}
@spaces.GPU # Add spaces.GPU decorator for Zero-GPU support
async def transcribe_audio(audio_file_path, model_size="base", language="en"):
global whisper_model, whisper_processor
try:
# Get model identifier
model_id = WHISPER_MODEL_SIZES.get(model_size.lower(), WHISPER_MODEL_SIZES['base'])
# Load model and processor on first use or if model size changes
if whisper_model is None or whisper_processor is None or (whisper_model and whisper_model.config._name_or_path != model_id):
print(f"Loading Whisper {model_size} model...")
whisper_processor = WhisperProcessor.from_pretrained(model_id)
whisper_model = WhisperForConditionalGeneration.from_pretrained(model_id)
print(f"Model loaded on device: {whisper_model.device}")
# Process audio
speech_array, sample_rate = torchaudio.load(audio_file_path)
# Convert to mono if needed
if speech_array.shape[0] > 1:
speech_array = torch.mean(speech_array, dim=0, keepdim=True)
# Resample to 16kHz if needed
if sample_rate != 16000:
resampler = torchaudio.transforms.Resample(sample_rate, 16000)
speech_array = resampler(speech_array)
# Prepare inputs for the model
input_features = whisper_processor(
speech_array.squeeze().numpy(),
sampling_rate=16000,
return_tensors="pt"
).input_features
# Generate transcription
generation_kwargs = {}
if language:
forced_decoder_ids = whisper_processor.get_decoder_prompt_ids(language=language, task="transcribe")
generation_kwargs["forced_decoder_ids"] = forced_decoder_ids
# Run the model
with torch.no_grad():
predicted_ids = whisper_model.generate(input_features, **generation_kwargs)
# Decode the output
transcription = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)
# Return the transcribed text
return transcription[0]
except Exception as e:
print(f"Error during transcription: {str(e)}")
return ""