Update app.py
Browse files
app.py
CHANGED
@@ -2,20 +2,38 @@ import gradio as gr
|
|
2 |
from transformers import AutoModelForImageClassification, AutoFeatureExtractor
|
3 |
import torch
|
4 |
from PIL import Image
|
|
|
|
|
|
|
5 |
|
6 |
# 加载模型和特征提取器
|
7 |
model_name = "microsoft/beit-base-patch16-224"
|
8 |
model = AutoModelForImageClassification.from_pretrained(model_name)
|
9 |
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
|
10 |
|
|
|
|
|
|
|
|
|
11 |
# 定义分类函数
|
12 |
def classify_image(image):
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
with torch.no_grad():
|
15 |
-
outputs = model(**
|
16 |
logits = outputs.logits
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
19 |
|
20 |
# 创建 Gradio 界面
|
21 |
demo = gr.Interface(fn=classify_image, inputs="image", outputs="text", title="Image Classification Demo")
|
|
|
2 |
from transformers import AutoModelForImageClassification, AutoFeatureExtractor
|
3 |
import torch
|
4 |
from PIL import Image
|
5 |
+
import numpy as np
|
6 |
+
import json
|
7 |
+
import requests
|
8 |
|
9 |
# 加载模型和特征提取器
|
10 |
model_name = "microsoft/beit-base-patch16-224"
|
11 |
model = AutoModelForImageClassification.from_pretrained(model_name)
|
12 |
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
|
13 |
|
14 |
+
# 获取 ImageNet 类别映射
|
15 |
+
LABELS_URL = "https://storage.googleapis.com/bit_models/imagenet21k_wordnet_id_map.json"
|
16 |
+
imagenet_classes = requests.get(LABELS_URL).json()
|
17 |
+
|
18 |
# 定义分类函数
|
19 |
def classify_image(image):
|
20 |
+
# 转换 PIL Image 为 numpy 数组
|
21 |
+
if isinstance(image, Image.Image):
|
22 |
+
image = np.array(image)
|
23 |
+
|
24 |
+
# 进行特征提取
|
25 |
+
inputs = feature_extractor(images=image, return_tensors="pt")
|
26 |
+
|
27 |
+
# 预测类别
|
28 |
with torch.no_grad():
|
29 |
+
outputs = model(**inputs)
|
30 |
logits = outputs.logits
|
31 |
+
predicted_class_idx = logits.argmax(-1).item()
|
32 |
+
|
33 |
+
# 获取类别名称
|
34 |
+
class_name = imagenet_classes.get(str(predicted_class_idx), "Unknown")
|
35 |
+
|
36 |
+
return f"Predicted class: {class_name} (ID: {predicted_class_idx})"
|
37 |
|
38 |
# 创建 Gradio 界面
|
39 |
demo = gr.Interface(fn=classify_image, inputs="image", outputs="text", title="Image Classification Demo")
|