import spaces import gradio as gr import torch import yaml import argparse from seed_vc_wrapper import SeedVCWrapper from modules.v2.vc_wrapper import VoiceConversionWrapper # Set up device and torch configurations if torch.cuda.is_available(): device = torch.device("cuda") elif torch.backends.mps.is_available(): device = torch.device("mps") else: device = torch.device("cpu") torch._inductor.config.coordinate_descent_tuning = True torch._inductor.config.triton.unique_kernel_names = True if hasattr(torch._inductor.config, "fx_graph_cache"): # Experimental feature to reduce compilation times, will be on by default in future torch._inductor.config.fx_graph_cache = True dtype = torch.float16 def load_v2_models(): from hydra.utils import instantiate from omegaconf import DictConfig cfg = DictConfig(yaml.safe_load(open("configs/v2/vc_wrapper.yaml", "r"))) vc_wrapper = instantiate(cfg) vc_wrapper.load_checkpoints() vc_wrapper.to(device) vc_wrapper.eval() vc_wrapper.setup_ar_caches(max_batch_size=1, max_seq_len=4096, dtype=dtype, device=device) return vc_wrapper # Global variables to store model instances vc_wrapper_v1 = SeedVCWrapper() vc_wrapper_v2 = load_v2_models() @spaces.GPU def convert_voice_v1_wrapper(source_audio_path, target_audio_path, diffusion_steps=10, length_adjust=1.0, inference_cfg_rate=0.7, f0_condition=False, auto_f0_adjust=True, pitch_shift=0, stream_output=True): """ Wrapper function for vc_wrapper.convert_voice that can be decorated with @spaces.GPU """ # Use yield from to properly handle the generator yield from vc_wrapper_v1.convert_voice( source=source_audio_path, target=target_audio_path, diffusion_steps=diffusion_steps, length_adjust=length_adjust, inference_cfg_rate=inference_cfg_rate, f0_condition=f0_condition, auto_f0_adjust=auto_f0_adjust, pitch_shift=pitch_shift, stream_output=stream_output ) @spaces.GPU def convert_voice_v2_wrapper(source_audio_path, target_audio_path, diffusion_steps=30, length_adjust=1.0, intelligebility_cfg_rate=0.7, similarity_cfg_rate=0.7, top_p=0.7, temperature=0.7, repetition_penalty=1.5, convert_style=False, anonymization_only=False, stream_output=True): """ Wrapper function for vc_wrapper.convert_voice_with_streaming that can be decorated with @spaces.GPU """ # Use yield from to properly handle the generator yield from vc_wrapper_v2.convert_voice_with_streaming( source_audio_path=source_audio_path, target_audio_path=target_audio_path, diffusion_steps=diffusion_steps, length_adjust=length_adjust, intelligebility_cfg_rate=intelligebility_cfg_rate, similarity_cfg_rate=similarity_cfg_rate, top_p=top_p, temperature=temperature, repetition_penalty=repetition_penalty, convert_style=convert_style, anonymization_only=anonymization_only, device=device, dtype=dtype, stream_output=stream_output ) def create_v1_interface(): # Set up Gradio interface description = ( "Zero-shot voice conversion with in-context learning. " "for details and updates.
Note that any reference audio will be forcefully clipped to 25s if beyond this length.
" "If total duration of source and reference audio exceeds 30s, source audio will be processed in chunks.
") inputs = [ gr.Audio(type="filepath", label="Source Audio"), gr.Audio(type="filepath", label="Reference Audio"), gr.Slider(minimum=1, maximum=200, value=10, step=1, label="Diffusion Steps", info="10 by default, 50~100 for best quality"), gr.Slider(minimum=0.5, maximum=2.0, step=0.1, value=1.0, label="Length Adjust", info="<1.0 for speed-up speech, >1.0 for slow-down speech"), gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.7, label="Inference CFG Rate", info="has subtle influence"), gr.Checkbox(label="Use F0 conditioned model", value=False, info="Must set to true for singing voice conversion"), gr.Checkbox(label="Auto F0 adjust", value=True, info="Roughly adjust F0 to match target voice. Only works when F0 conditioned model is used."), gr.Slider(label='Pitch shift', minimum=-24, maximum=24, step=1, value=0, info="Pitch shift in semitones, only works when F0 conditioned model is used"), ] examples = [ ["examples/source/yae_0.wav", "examples/reference/dingzhen_0.wav", 25, 1.0, 0.7, False, True, 0], ["examples/source/jay_0.wav", "examples/reference/azuma_0.wav", 25, 1.0, 0.7, True, True, 0], ["examples/source/Wiz Khalifa,Charlie Puth - See You Again [vocals]_[cut_28sec].wav", "examples/reference/teio_0.wav", 100, 1.0, 0.7, True, False, 0], ["examples/source/TECHNOPOLIS - 2085 [vocals]_[cut_14sec].wav", "examples/reference/trump_0.wav", 50, 1.0, 0.7, True, False, -12], ] outputs = [ gr.Audio(label="Stream Output Audio", streaming=True, format='mp3'), gr.Audio(label="Full Output Audio", streaming=False, format='wav') ] return gr.Interface( fn=convert_voice_v1_wrapper, description=description, inputs=inputs, outputs=outputs, title="Seed Voice Conversion V1 (Voice & Singing Voice Conversion)", examples=examples, cache_examples=False, ) def create_v2_interface(): # Set up Gradio interface description = ( "Zero-shot voice/style conversion with in-context learning." "for details and updates.
Note that any reference audio will be forcefully clipped to 25s if beyond this length.
" "If total duration of source and reference audio exceeds 30s, source audio will be processed in chunks.
" "Please click the 'convert style/emotion/accent' checkbox to convert the style, emotion, or accent of the source audio, or else only timbre conversion will be performed.
" "Click the 'anonymization only' checkbox will ignore reference audio but convert source to an 'average voice' determined by model itself.
") inputs = [ gr.Audio(type="filepath", label="Source Audio"), gr.Audio(type="filepath", label="Reference Audio"), gr.Slider(minimum=1, maximum=200, value=30, step=1, label="Diffusion Steps", info="30 by default, 50~100 for best quality"), gr.Slider(minimum=0.5, maximum=2.0, step=0.1, value=1.0, label="Length Adjust", info="<1.0 for speed-up speech, >1.0 for slow-down speech"), gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.0, label="Intelligibility CFG Rate", info="controls pronunciation intelligibility"), gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.7, label="Similarity CFG Rate", info="controls similarity to reference audio"), gr.Slider(minimum=0.1, maximum=1.0, step=0.1, value=0.9, label="Top-p", info="AR model sampling top P"), gr.Slider(minimum=0.1, maximum=2.0, step=0.1, value=1.0, label="Temperature", info="AR model sampling temperature"), gr.Slider(minimum=1.0, maximum=3.0, step=0.1, value=1.0, label="Repetition Penalty", info="AR model sampling repetition penalty"), gr.Checkbox(label="convert style/emotion/accent", value=False), gr.Checkbox(label="anonymization only", value=False), ] examples = [ ["examples/source/yae_0.wav", "examples/reference/dingzhen_0.wav", 25, 1.0, 0.7, 0.7, 0.9, 1.0, 1.0, True, False], ["examples/source/jay_0.wav", "examples/reference/azuma_0.wav", 25, 1.0, 0.7, 0.7, 0.9, 1.0, 1.0, True, False], ] outputs = [ gr.Audio(label="Stream Output Audio", streaming=True, format='mp3'), gr.Audio(label="Full Output Audio", streaming=False, format='wav') ] return gr.Interface( fn=convert_voice_v2_wrapper, description=description, inputs=inputs, outputs=outputs, title="Seed Voice Conversion V2 (Voice & Style Conversion)", examples=examples, cache_examples=False, ) def main(args): # Create interfaces v1_interface = create_v1_interface() v2_interface = create_v2_interface() # Create tabs with gr.Blocks(title="Seed Voice Conversion") as demo: gr.Markdown("# Seed Voice Conversion") gr.Markdown("Choose between V1 (Voice & Singing Voice Conversion) or V2 (Voice & Style Conversion)") with gr.Tabs(): with gr.TabItem("V2 - Voice & Style Conversion"): v2_interface.render() with gr.TabItem("V1 - Voice & Singing Voice Conversion"): v1_interface.render() # Launch the combined interface demo.launch() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--compile", type=bool, default=True) args = parser.parse_args() main(args)