File size: 9,349 Bytes
4713cdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import spaces
import gradio as gr
import torch
import yaml
import argparse
from seed_vc_wrapper import SeedVCWrapper
from modules.v2.vc_wrapper import VoiceConversionWrapper

# Set up device and torch configurations
if torch.cuda.is_available():
    device = torch.device("cuda")
elif torch.backends.mps.is_available():
    device = torch.device("mps")
else:
    device = torch.device("cpu")

torch._inductor.config.coordinate_descent_tuning = True
torch._inductor.config.triton.unique_kernel_names = True

if hasattr(torch._inductor.config, "fx_graph_cache"):
    # Experimental feature to reduce compilation times, will be on by default in future
    torch._inductor.config.fx_graph_cache = True

dtype = torch.float16


def load_v2_models():
    from hydra.utils import instantiate
    from omegaconf import DictConfig
    cfg = DictConfig(yaml.safe_load(open("configs/v2/vc_wrapper.yaml", "r")))
    vc_wrapper = instantiate(cfg)
    vc_wrapper.load_checkpoints()
    vc_wrapper.to(device)
    vc_wrapper.eval()

    vc_wrapper.setup_ar_caches(max_batch_size=1, max_seq_len=4096, dtype=dtype, device=device)

    return vc_wrapper

# Global variables to store model instances
vc_wrapper_v1 = SeedVCWrapper()
vc_wrapper_v2 = load_v2_models()

@spaces.GPU
def convert_voice_v1_wrapper(source_audio_path, target_audio_path, diffusion_steps=10,
                             length_adjust=1.0, inference_cfg_rate=0.7, f0_condition=False,
                             auto_f0_adjust=True, pitch_shift=0, stream_output=True):
    """
    Wrapper function for vc_wrapper.convert_voice that can be decorated with @spaces.GPU
    """

    # Use yield from to properly handle the generator
    yield from vc_wrapper_v1.convert_voice(
        source=source_audio_path,
        target=target_audio_path,
        diffusion_steps=diffusion_steps,
        length_adjust=length_adjust,
        inference_cfg_rate=inference_cfg_rate,
        f0_condition=f0_condition,
        auto_f0_adjust=auto_f0_adjust,
        pitch_shift=pitch_shift,
        stream_output=stream_output
    )

@spaces.GPU
def convert_voice_v2_wrapper(source_audio_path, target_audio_path, diffusion_steps=30,
                             length_adjust=1.0, intelligebility_cfg_rate=0.7, similarity_cfg_rate=0.7,
                             top_p=0.7, temperature=0.7, repetition_penalty=1.5,
                             convert_style=False, anonymization_only=False, stream_output=True):
    """
    Wrapper function for vc_wrapper.convert_voice_with_streaming that can be decorated with @spaces.GPU
    """

    # Use yield from to properly handle the generator
    yield from vc_wrapper_v2.convert_voice_with_streaming(
        source_audio_path=source_audio_path,
        target_audio_path=target_audio_path,
        diffusion_steps=diffusion_steps,
        length_adjust=length_adjust,
        intelligebility_cfg_rate=intelligebility_cfg_rate,
        similarity_cfg_rate=similarity_cfg_rate,
        top_p=top_p,
        temperature=temperature,
        repetition_penalty=repetition_penalty,
        convert_style=convert_style,
        anonymization_only=anonymization_only,
        device=device,
        dtype=dtype,
        stream_output=stream_output
    )


def create_v1_interface():
    # Set up Gradio interface
    description = (
        "Zero-shot voice conversion with in-context learning. "
        "for details and updates.<br>Note that any reference audio will be forcefully clipped to 25s if beyond this length.<br> "
        "If total duration of source and reference audio exceeds 30s, source audio will be processed in chunks.<br> ")

    inputs = [
        gr.Audio(type="filepath", label="Source Audio"),
        gr.Audio(type="filepath", label="Reference Audio"),
        gr.Slider(minimum=1, maximum=200, value=10, step=1, label="Diffusion Steps",
                  info="10 by default, 50~100 for best quality"),
        gr.Slider(minimum=0.5, maximum=2.0, step=0.1, value=1.0, label="Length Adjust",
                  info="<1.0 for speed-up speech, >1.0 for slow-down speech"),
        gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.7, label="Inference CFG Rate",
                  info="has subtle influence"),
        gr.Checkbox(label="Use F0 conditioned model", value=False,
                    info="Must set to true for singing voice conversion"),
        gr.Checkbox(label="Auto F0 adjust", value=True,
                    info="Roughly adjust F0 to match target voice. Only works when F0 conditioned model is used."),
        gr.Slider(label='Pitch shift', minimum=-24, maximum=24, step=1, value=0,
                  info="Pitch shift in semitones, only works when F0 conditioned model is used"),
    ]

    examples = [
        ["examples/source/yae_0.wav", "examples/reference/dingzhen_0.wav", 25, 1.0, 0.7, False, True, 0],
        ["examples/source/jay_0.wav", "examples/reference/azuma_0.wav", 25, 1.0, 0.7, True, True, 0],
        ["examples/source/Wiz Khalifa,Charlie Puth - See You Again [vocals]_[cut_28sec].wav",
         "examples/reference/teio_0.wav", 100, 1.0, 0.7, True, False, 0],
        ["examples/source/TECHNOPOLIS - 2085 [vocals]_[cut_14sec].wav",
         "examples/reference/trump_0.wav", 50, 1.0, 0.7, True, False, -12],
    ]

    outputs = [
        gr.Audio(label="Stream Output Audio", streaming=True, format='mp3'),
        gr.Audio(label="Full Output Audio", streaming=False, format='wav')
    ]

    return gr.Interface(
        fn=convert_voice_v1_wrapper,
        description=description,
        inputs=inputs,
        outputs=outputs,
        title="Seed Voice Conversion V1 (Voice & Singing Voice Conversion)",
        examples=examples,
        cache_examples=False,
    )


def create_v2_interface():
    # Set up Gradio interface
    description = (
        "Zero-shot voice/style conversion with in-context learning."
        "for details and updates.<br>Note that any reference audio will be forcefully clipped to 25s if beyond this length.<br> "
        "If total duration of source and reference audio exceeds 30s, source audio will be processed in chunks.<br> "
        "Please click the 'convert style/emotion/accent' checkbox to convert the style, emotion, or accent of the source audio, or else only timbre conversion will be performed.<br> "
        "Click the 'anonymization only' checkbox will ignore reference audio but convert source to an 'average voice' determined by model itself.<br> ")
    inputs = [
        gr.Audio(type="filepath", label="Source Audio"),
        gr.Audio(type="filepath", label="Reference Audio"),
        gr.Slider(minimum=1, maximum=200, value=30, step=1, label="Diffusion Steps",
                  info="30 by default, 50~100 for best quality"),
        gr.Slider(minimum=0.5, maximum=2.0, step=0.1, value=1.0, label="Length Adjust",
                  info="<1.0 for speed-up speech, >1.0 for slow-down speech"),
        gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.0, label="Intelligibility CFG Rate",
                  info="controls pronunciation intelligibility"),
        gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.7, label="Similarity CFG Rate",
                  info="controls similarity to reference audio"),
        gr.Slider(minimum=0.1, maximum=1.0, step=0.1, value=0.9, label="Top-p",
                  info="AR model sampling top P"),
        gr.Slider(minimum=0.1, maximum=2.0, step=0.1, value=1.0, label="Temperature",
                  info="AR model sampling temperature"),
        gr.Slider(minimum=1.0, maximum=3.0, step=0.1, value=1.0, label="Repetition Penalty",
                  info="AR model sampling repetition penalty"),
        gr.Checkbox(label="convert style/emotion/accent", value=False),
        gr.Checkbox(label="anonymization only", value=False),
    ]

    examples = [
        ["examples/source/yae_0.wav", "examples/reference/dingzhen_0.wav", 25, 1.0, 0.7, 0.7, 0.9, 1.0, 1.0, True,
         False],
        ["examples/source/jay_0.wav", "examples/reference/azuma_0.wav", 25, 1.0, 0.7, 0.7, 0.9, 1.0, 1.0, True, False],
    ]

    outputs = [
        gr.Audio(label="Stream Output Audio", streaming=True, format='mp3'),
        gr.Audio(label="Full Output Audio", streaming=False, format='wav')
    ]

    return gr.Interface(
        fn=convert_voice_v2_wrapper,
        description=description,
        inputs=inputs,
        outputs=outputs,
        title="Seed Voice Conversion V2 (Voice & Style Conversion)",
        examples=examples,
        cache_examples=False,
    )


def main(args):
    # Create interfaces
    v1_interface = create_v1_interface()
    v2_interface = create_v2_interface()

    # Create tabs
    with gr.Blocks(title="Seed Voice Conversion") as demo:
        gr.Markdown("# Seed Voice Conversion")
        gr.Markdown("Choose between V1 (Voice & Singing Voice Conversion) or V2 (Voice & Style Conversion)")

        with gr.Tabs():
            with gr.TabItem("V2 - Voice & Style Conversion"):
                v2_interface.render()
            with gr.TabItem("V1 - Voice & Singing Voice Conversion"):
                v1_interface.render()

    # Launch the combined interface
    demo.launch()


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--compile", type=bool, default=True)
    args = parser.parse_args()
    main(args)