Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,349 Bytes
4713cdb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
import spaces
import gradio as gr
import torch
import yaml
import argparse
from seed_vc_wrapper import SeedVCWrapper
from modules.v2.vc_wrapper import VoiceConversionWrapper
# Set up device and torch configurations
if torch.cuda.is_available():
device = torch.device("cuda")
elif torch.backends.mps.is_available():
device = torch.device("mps")
else:
device = torch.device("cpu")
torch._inductor.config.coordinate_descent_tuning = True
torch._inductor.config.triton.unique_kernel_names = True
if hasattr(torch._inductor.config, "fx_graph_cache"):
# Experimental feature to reduce compilation times, will be on by default in future
torch._inductor.config.fx_graph_cache = True
dtype = torch.float16
def load_v2_models():
from hydra.utils import instantiate
from omegaconf import DictConfig
cfg = DictConfig(yaml.safe_load(open("configs/v2/vc_wrapper.yaml", "r")))
vc_wrapper = instantiate(cfg)
vc_wrapper.load_checkpoints()
vc_wrapper.to(device)
vc_wrapper.eval()
vc_wrapper.setup_ar_caches(max_batch_size=1, max_seq_len=4096, dtype=dtype, device=device)
return vc_wrapper
# Global variables to store model instances
vc_wrapper_v1 = SeedVCWrapper()
vc_wrapper_v2 = load_v2_models()
@spaces.GPU
def convert_voice_v1_wrapper(source_audio_path, target_audio_path, diffusion_steps=10,
length_adjust=1.0, inference_cfg_rate=0.7, f0_condition=False,
auto_f0_adjust=True, pitch_shift=0, stream_output=True):
"""
Wrapper function for vc_wrapper.convert_voice that can be decorated with @spaces.GPU
"""
# Use yield from to properly handle the generator
yield from vc_wrapper_v1.convert_voice(
source=source_audio_path,
target=target_audio_path,
diffusion_steps=diffusion_steps,
length_adjust=length_adjust,
inference_cfg_rate=inference_cfg_rate,
f0_condition=f0_condition,
auto_f0_adjust=auto_f0_adjust,
pitch_shift=pitch_shift,
stream_output=stream_output
)
@spaces.GPU
def convert_voice_v2_wrapper(source_audio_path, target_audio_path, diffusion_steps=30,
length_adjust=1.0, intelligebility_cfg_rate=0.7, similarity_cfg_rate=0.7,
top_p=0.7, temperature=0.7, repetition_penalty=1.5,
convert_style=False, anonymization_only=False, stream_output=True):
"""
Wrapper function for vc_wrapper.convert_voice_with_streaming that can be decorated with @spaces.GPU
"""
# Use yield from to properly handle the generator
yield from vc_wrapper_v2.convert_voice_with_streaming(
source_audio_path=source_audio_path,
target_audio_path=target_audio_path,
diffusion_steps=diffusion_steps,
length_adjust=length_adjust,
intelligebility_cfg_rate=intelligebility_cfg_rate,
similarity_cfg_rate=similarity_cfg_rate,
top_p=top_p,
temperature=temperature,
repetition_penalty=repetition_penalty,
convert_style=convert_style,
anonymization_only=anonymization_only,
device=device,
dtype=dtype,
stream_output=stream_output
)
def create_v1_interface():
# Set up Gradio interface
description = (
"Zero-shot voice conversion with in-context learning. "
"for details and updates.<br>Note that any reference audio will be forcefully clipped to 25s if beyond this length.<br> "
"If total duration of source and reference audio exceeds 30s, source audio will be processed in chunks.<br> ")
inputs = [
gr.Audio(type="filepath", label="Source Audio"),
gr.Audio(type="filepath", label="Reference Audio"),
gr.Slider(minimum=1, maximum=200, value=10, step=1, label="Diffusion Steps",
info="10 by default, 50~100 for best quality"),
gr.Slider(minimum=0.5, maximum=2.0, step=0.1, value=1.0, label="Length Adjust",
info="<1.0 for speed-up speech, >1.0 for slow-down speech"),
gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.7, label="Inference CFG Rate",
info="has subtle influence"),
gr.Checkbox(label="Use F0 conditioned model", value=False,
info="Must set to true for singing voice conversion"),
gr.Checkbox(label="Auto F0 adjust", value=True,
info="Roughly adjust F0 to match target voice. Only works when F0 conditioned model is used."),
gr.Slider(label='Pitch shift', minimum=-24, maximum=24, step=1, value=0,
info="Pitch shift in semitones, only works when F0 conditioned model is used"),
]
examples = [
["examples/source/yae_0.wav", "examples/reference/dingzhen_0.wav", 25, 1.0, 0.7, False, True, 0],
["examples/source/jay_0.wav", "examples/reference/azuma_0.wav", 25, 1.0, 0.7, True, True, 0],
["examples/source/Wiz Khalifa,Charlie Puth - See You Again [vocals]_[cut_28sec].wav",
"examples/reference/teio_0.wav", 100, 1.0, 0.7, True, False, 0],
["examples/source/TECHNOPOLIS - 2085 [vocals]_[cut_14sec].wav",
"examples/reference/trump_0.wav", 50, 1.0, 0.7, True, False, -12],
]
outputs = [
gr.Audio(label="Stream Output Audio", streaming=True, format='mp3'),
gr.Audio(label="Full Output Audio", streaming=False, format='wav')
]
return gr.Interface(
fn=convert_voice_v1_wrapper,
description=description,
inputs=inputs,
outputs=outputs,
title="Seed Voice Conversion V1 (Voice & Singing Voice Conversion)",
examples=examples,
cache_examples=False,
)
def create_v2_interface():
# Set up Gradio interface
description = (
"Zero-shot voice/style conversion with in-context learning."
"for details and updates.<br>Note that any reference audio will be forcefully clipped to 25s if beyond this length.<br> "
"If total duration of source and reference audio exceeds 30s, source audio will be processed in chunks.<br> "
"Please click the 'convert style/emotion/accent' checkbox to convert the style, emotion, or accent of the source audio, or else only timbre conversion will be performed.<br> "
"Click the 'anonymization only' checkbox will ignore reference audio but convert source to an 'average voice' determined by model itself.<br> ")
inputs = [
gr.Audio(type="filepath", label="Source Audio"),
gr.Audio(type="filepath", label="Reference Audio"),
gr.Slider(minimum=1, maximum=200, value=30, step=1, label="Diffusion Steps",
info="30 by default, 50~100 for best quality"),
gr.Slider(minimum=0.5, maximum=2.0, step=0.1, value=1.0, label="Length Adjust",
info="<1.0 for speed-up speech, >1.0 for slow-down speech"),
gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.0, label="Intelligibility CFG Rate",
info="controls pronunciation intelligibility"),
gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.7, label="Similarity CFG Rate",
info="controls similarity to reference audio"),
gr.Slider(minimum=0.1, maximum=1.0, step=0.1, value=0.9, label="Top-p",
info="AR model sampling top P"),
gr.Slider(minimum=0.1, maximum=2.0, step=0.1, value=1.0, label="Temperature",
info="AR model sampling temperature"),
gr.Slider(minimum=1.0, maximum=3.0, step=0.1, value=1.0, label="Repetition Penalty",
info="AR model sampling repetition penalty"),
gr.Checkbox(label="convert style/emotion/accent", value=False),
gr.Checkbox(label="anonymization only", value=False),
]
examples = [
["examples/source/yae_0.wav", "examples/reference/dingzhen_0.wav", 25, 1.0, 0.7, 0.7, 0.9, 1.0, 1.0, True,
False],
["examples/source/jay_0.wav", "examples/reference/azuma_0.wav", 25, 1.0, 0.7, 0.7, 0.9, 1.0, 1.0, True, False],
]
outputs = [
gr.Audio(label="Stream Output Audio", streaming=True, format='mp3'),
gr.Audio(label="Full Output Audio", streaming=False, format='wav')
]
return gr.Interface(
fn=convert_voice_v2_wrapper,
description=description,
inputs=inputs,
outputs=outputs,
title="Seed Voice Conversion V2 (Voice & Style Conversion)",
examples=examples,
cache_examples=False,
)
def main(args):
# Create interfaces
v1_interface = create_v1_interface()
v2_interface = create_v2_interface()
# Create tabs
with gr.Blocks(title="Seed Voice Conversion") as demo:
gr.Markdown("# Seed Voice Conversion")
gr.Markdown("Choose between V1 (Voice & Singing Voice Conversion) or V2 (Voice & Style Conversion)")
with gr.Tabs():
with gr.TabItem("V2 - Voice & Style Conversion"):
v2_interface.render()
with gr.TabItem("V1 - Voice & Singing Voice Conversion"):
v1_interface.render()
# Launch the combined interface
demo.launch()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--compile", type=bool, default=True)
args = parser.parse_args()
main(args) |