CrossFlow / diffusion /base_solver.py
QHL067's picture
working
f9567e5
"""
This file contains the solver base class, including the cfg indicator
"""
import enum
import logging
from collections import defaultdict
from typing import Callable, Dict, List, Union
import numpy as np
import torch
import random
logger = logging.getLogger(__name__)
_default_cfg_processor = {"caption": lambda x, T, t: x}
class ConditionTypes(enum.Enum):
IMAGE_EMBED: str = "image_conditioning" # not implemented yet
TEXT_EMBED: str = "caption"
HINT_EMBED: str = "hint" # not implemented yet
class Solver:
def __init__(
self,
model_fn,
bdv_model_fn=None,
schedule="linear",
conditioning_types: List[str] = ["caption"],
guidance_scale: Union[float, Dict[ConditionTypes, float]] = 1.0,
cfg_processor: Callable = _default_cfg_processor,
**kwargs,
):
self.model = model_fn
self.bdv_model = bdv_model_fn
self.schedule = schedule
# This list (conditioning_types) is important to decide which conditioning variable is given the priority
# For multi_cfg with 2 variables c,i, the cfg equation is
# output = e(null,null) + scale_c * (e(i,c) - e(i,null)) + scale_i * (e(i,null) - e(null,null))
# Note that the marginalization can be changed slightly to obtain a different equation
# output = e(null,null) + scale_i * (e(c,i) - e(c,null)) + scale_c * (e(c,null) - e(null,null))
# The order of the conditioning variables in the list decides which of the two equations above are used
# If the list is ["image", "caption"] then the first equation is used and
# if the list is ["caption", "image"] then the second is used
self.condition_types = [ConditionTypes(el) for el in conditioning_types]
self.unconditional_guidance_scale = guidance_scale
if isinstance(guidance_scale, dict):
self.unconditional_guidance_scale = {
ConditionTypes(k): v for k, v in guidance_scale.items()
}
else:
# If a single float is provided, we assume it is for text conditioning
self.unconditional_guidance_scale = {
ConditionTypes.TEXT_EMBED: guidance_scale
}
assert all(
[
el in self.unconditional_guidance_scale.keys()
for el in self.condition_types
]
)
self.cfg_processor = cfg_processor
if self.cfg_processor is None:
self.cfg_processor = _default_cfg_processor
if isinstance(self.cfg_processor, dict):
assert all(callable(v) for k, v in self.cfg_processor.items())
self.cfg_processor = {
ConditionTypes(k): v for k, v in self.cfg_processor.items()
}
else:
assert callable(self.cfg_processor)
self.cfg_processor = {ConditionTypes.TEXT_EMBED: cfg_processor}
if self.cfg_processor is not None:
assert all([el in self.cfg_processor.keys() for el in self.condition_types])
self.inf_steps_completed = 0
@property
def device(self):
return self.model.device
def register_buffer(self, name, attr):
if isinstance(attr, torch.Tensor):
attr = attr.to(self.device)
setattr(self, name, attr)
def _check_the_conditioning(self, conditioning, batch_size):
# Checks if batch sizes match
if conditioning is not None:
if isinstance(conditioning, dict):
ctmp = conditioning[list(conditioning.keys())[0]]
while isinstance(ctmp, list):
ctmp = ctmp[0]
if isinstance(ctmp, dict):
if isinstance(ctmp["c"], list):
cbs = ctmp["c"][0].shape[0]
else:
cbs = ctmp["c"].shape[0]
else:
cbs = ctmp.shape[0]
if cbs != batch_size:
logger.info(
f"Warning: Got {cbs} conditionings but batch-size is {batch_size}"
)
elif isinstance(conditioning, list):
for ctmp in conditioning:
if ctmp.shape[0] != batch_size:
logger.info(
f"Warning: Got {ctmp.shape[0]} conditionings but batch-size is {batch_size}"
)
else:
if conditioning.shape[0] != batch_size:
logger.info(
f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}"
)
def sample(
self,
sample_steps,
batch_size,
sampling_method,
unconditional_guidance_scale,
has_null_indicator,
shape=None, # no longer use it
callback=None,
normals_sequence=None,
img_callback=None,
quantize_x0=False,
eta=0.0,
mask=None,
x0=None,
temperature=1.0,
noise_dropout=0.0,
verbose=True,
x_T=None,
log_every_t=100,
dynamic_threshold=None,
ucg_schedule=None,
t_schedule=None, # Default value is set below
skip_type=None, # Deprecated, kept for backward compatibility. Use `t_schedule` instead.
start_timestep=None,
num_timesteps=None,
do_make_schedule=True,
**kwargs,
):
self.num_inf_timesteps = sample_steps
assert skip_type is None
t_schedule = t_schedule or "time_uniform"
if self.unconditional_guidance_scale is None:
self.unconditional_guidance_scale = unconditional_guidance_scale
assert isinstance(sampling_method, Callable)
samples, intermediates = sampling_method(
x_T=x_T,
# Hardcoded in PLMS file
ddim_use_original_steps=False,
callback=callback,
num_timesteps=num_timesteps,
quantize_denoised=quantize_x0,
mask=mask,
x0=x0,
img_callback=img_callback,
log_every_t=log_every_t,
temperature=temperature,
noise_dropout=noise_dropout,
unconditional_guidance_scale=unconditional_guidance_scale,
has_null_indicator=has_null_indicator,
dynamic_threshold=dynamic_threshold,
verbose=verbose,
ucg_schedule=ucg_schedule,
start_timestep=start_timestep,
)
return samples, intermediates
@torch.no_grad()
def get_model_output_dimr(
self,
x,
t_continuous,
unconditional_guidance_scale,
has_null_indicator,
):
log_snr = 4 - t_continuous * 8 # inversed
if has_null_indicator:
_cond = self.model(x, t=t_continuous, log_snr=log_snr, null_indicator=torch.tensor([False] * x.shape[0]).to(x.device))[-1]
_uncond = self.model(x, t=t_continuous, log_snr=log_snr, null_indicator=torch.tensor([True] * x.shape[0]).to(x.device))[-1]
assert unconditional_guidance_scale > 1
return _uncond + unconditional_guidance_scale * (_cond - _uncond)
else:
_cond = self.model(x, log_snr=log_snr)[-1]
return _cond