CrossFlow / app.py
QHL067's picture
app
7e02c9b
raw
history blame
13.2 kB
import gradio as gr
from absl import flags
from absl import app
from ml_collections import config_flags
import os
import spaces #[uncomment to use ZeroGPU]
import torch
import io
import random
import tempfile
import numpy as np
import torch
import torch.nn.functional as F
from torchvision.utils import save_image
from torchvision.transforms import ToPILImage
from huggingface_hub import hf_hub_download
from absl import logging
import ml_collections
from diffusion.flow_matching import ODEEulerFlowMatchingSolver
import utils
import libs.autoencoder
from libs.clip import FrozenCLIPEmbedder
from configs import t2i_512px_clip_dimr, t2i_256px_clip_dimr
def unpreprocess(x: torch.Tensor) -> torch.Tensor:
x = 0.5 * (x + 1.0)
x.clamp_(0.0, 1.0)
return x
def cosine_similarity_torch(latent1: torch.Tensor, latent2: torch.Tensor) -> torch.Tensor:
latent1_flat = latent1.view(-1)
latent2_flat = latent2.view(-1)
cosine_similarity = F.cosine_similarity(
latent1_flat.unsqueeze(0), latent2_flat.unsqueeze(0), dim=1
)
return cosine_similarity
def kl_divergence(latent1: torch.Tensor, latent2: torch.Tensor) -> torch.Tensor:
latent1_prob = F.softmax(latent1, dim=-1)
latent2_prob = F.softmax(latent2, dim=-1)
latent1_log_prob = torch.log(latent1_prob)
kl_div = F.kl_div(latent1_log_prob, latent2_prob, reduction="batchmean")
return kl_div
def batch_decode(_z: torch.Tensor, decode, batch_size: int = 5) -> torch.Tensor:
num_samples = _z.size(0)
decoded_batches = []
for i in range(0, num_samples, batch_size):
batch = _z[i : i + batch_size]
decoded_batch = decode(batch)
decoded_batches.append(decoded_batch)
return torch.cat(decoded_batches, dim=0)
def get_caption(llm: str, text_model, prompt_dict: dict, batch_size: int):
if batch_size == 3:
# Only addition or only subtraction mode.
assert len(prompt_dict) == 2, "Expected 2 prompts for batch_size 3."
batch_prompts = list(prompt_dict.values()) + [" "]
elif batch_size == 4:
# Addition and subtraction mode.
assert len(prompt_dict) == 3, "Expected 3 prompts for batch_size 4."
batch_prompts = list(prompt_dict.values()) + [" "]
elif batch_size >= 5:
# Linear interpolation mode.
assert len(prompt_dict) == 2, "Expected 2 prompts for linear interpolation."
batch_prompts = [prompt_dict["prompt_1"]] + [" "] * (batch_size - 2) + [prompt_dict["prompt_2"]]
else:
raise ValueError(f"Unsupported batch_size: {batch_size}")
if llm == "clip":
latent, latent_and_others = text_model.encode(batch_prompts)
context = latent_and_others["token_embedding"].detach()
elif llm == "t5":
latent, latent_and_others = text_model.get_text_embeddings(batch_prompts)
context = (latent_and_others["token_embedding"] * 10.0).detach()
else:
raise NotImplementedError(f"Language model {llm} not supported.")
token_mask = latent_and_others["token_mask"].detach()
tokens = latent_and_others["tokens"].detach()
captions = batch_prompts
return context, token_mask, tokens, captions
# Load configuration and initialize models.
# config_dict = t2i_512px_clip_dimr.get_config()
config_dict = t2i_256px_clip_dimr.get_config()
config = ml_collections.ConfigDict(config_dict)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logging.info(f"Using device: {device}")
# Freeze configuration.
config = ml_collections.FrozenConfigDict(config)
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024 # Currently not used.
# Load the main diffusion model.
repo_id = "QHL067/CrossFlow"
# filename = "pretrained_models/t2i_512px_clip_dimr.pth"
filename = "pretrained_models/t2i_256px_clip_dimr.pth"
checkpoint_path = hf_hub_download(repo_id=repo_id, filename=filename)
nnet = utils.get_nnet(**config.nnet)
nnet = nnet.to(device)
state_dict = torch.load(checkpoint_path, map_location=device)
nnet.load_state_dict(state_dict)
nnet.eval()
# Initialize text model.
llm = "clip"
clip = FrozenCLIPEmbedder()
clip.eval()
clip.to(device)
# Load autoencoder.
autoencoder = libs.autoencoder.get_model(**config.autoencoder)
autoencoder.to(device)
@torch.cuda.amp.autocast()
def encode(_batch: torch.Tensor) -> torch.Tensor:
"""Encode a batch of images using the autoencoder."""
return autoencoder.encode(_batch)
@torch.cuda.amp.autocast()
def decode(_batch: torch.Tensor) -> torch.Tensor:
"""Decode a batch of latent vectors using the autoencoder."""
return autoencoder.decode(_batch)
@spaces.GPU #[uncomment to use ZeroGPU]
def infer(
prompt1,
prompt2,
seed,
randomize_seed,
guidance_scale,
num_inference_steps,
num_of_interpolation,
save_gpu_memory=True,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
torch.manual_seed(seed)
if device.type == "cuda":
torch.cuda.manual_seed_all(seed)
# Only support interpolation in this implementation.
prompt_dict = {"prompt_1": prompt1, "prompt_2": prompt2}
for key, value in prompt_dict.items():
assert value is not None, f"{key} must not be None."
assert num_of_interpolation >= 5, "For linear interpolation, please sample at least five images."
# Get text embeddings and tokens.
_context, _token_mask, _token, _caption = get_caption(
llm, clip, prompt_dict=prompt_dict, batch_size=num_of_interpolation
)
with torch.no_grad():
_z_gaussian = torch.randn(num_of_interpolation, *config.z_shape, device=device)
_z_x0, _mu, _log_var = nnet(
_context, text_encoder=True, shape=_z_gaussian.shape, mask=_token_mask
)
_z_init = _z_x0.reshape(_z_gaussian.shape)
# Prepare the initial latent representations based on the number of interpolations.
if num_of_interpolation == 3:
# Addition or subtraction mode.
if config.prompt_a is not None:
assert config.prompt_s is None, "Only one of prompt_a or prompt_s should be provided."
z_init_temp = _z_init[0] + _z_init[1]
elif config.prompt_s is not None:
assert config.prompt_a is None, "Only one of prompt_a or prompt_s should be provided."
z_init_temp = _z_init[0] - _z_init[1]
else:
raise NotImplementedError("Either prompt_a or prompt_s must be provided for 3-sample mode.")
mean = z_init_temp.mean()
std = z_init_temp.std()
_z_init[2] = (z_init_temp - mean) / std
elif num_of_interpolation == 4:
z_init_temp = _z_init[0] + _z_init[1] - _z_init[2]
mean = z_init_temp.mean()
std = z_init_temp.std()
_z_init[3] = (z_init_temp - mean) / std
elif num_of_interpolation >= 5:
tensor_a = _z_init[0]
tensor_b = _z_init[-1]
num_interpolations = num_of_interpolation - 2
interpolations = [
tensor_a + (tensor_b - tensor_a) * (i / (num_interpolations + 1))
for i in range(1, num_interpolations + 1)
]
_z_init = torch.stack([tensor_a] + interpolations + [tensor_b], dim=0)
else:
raise ValueError("Unsupported number of interpolations.")
assert guidance_scale > 1, "Guidance scale must be greater than 1."
has_null_indicator = hasattr(config.nnet.model_args, "cfg_indicator")
ode_solver = ODEEulerFlowMatchingSolver(
nnet,
bdv_model_fn=None,
step_size_type="step_in_dsigma",
guidance_scale=guidance_scale,
)
_z, _ = ode_solver.sample(
x_T=_z_init,
batch_size=num_of_interpolation,
sample_steps=num_inference_steps,
unconditional_guidance_scale=guidance_scale,
has_null_indicator=has_null_indicator,
)
print("+++++"*20)
print("Now, save images")
print("+++++"*20)
if save_gpu_memory:
image_unprocessed = batch_decode(_z, decode)
else:
image_unprocessed = decode(_z)
samples = unpreprocess(image_unprocessed).contiguous()
to_pil = ToPILImage()
pil_images = [to_pil(img) for img in samples]
first_image = pil_images[0]
last_image = pil_images[-1]
gif_buffer = io.BytesIO()
pil_images[0].save(gif_buffer, format="GIF", save_all=True, append_images=pil_images[1:], duration=200, loop=0)
gif_buffer.seek(0)
gif_bytes = gif_buffer.read()
# Save the GIF bytes to a temporary file and get its path
temp_gif = tempfile.NamedTemporaryFile(delete=False, suffix=".gif")
temp_gif.write(gif_bytes)
temp_gif.close()
gif_path = temp_gif.name
return first_image, last_image, gif_path, seed
# return first_image, last_image, seed
# examples = [
# "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
# "An astronaut riding a green horse",
# "A delicious ceviche cheesecake slice",
# ]
examples = [
["A dog cooking dinner in the kitchen", "An orange cat wearing sunglasses on a ship"],
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# CrossFlow")
gr.Markdown("[CrossFlow](https://cross-flow.github.io/) directly transforms text representations into images for text-to-image generation, enabling interpolation in the input text latent space.")
gr.Markdown("This demo uses 256px images, 25 sampling steps (instead of 50), and 10 interpolations (instead of 50) to conserve GPU memory. For better results, see the original [code](https://github.com/qihao067/CrossFlow).")
# gr.Markdown("CrossFlow directly transforms text representations into images for text-to-image generation, enabling interpolation in the input text latent space.")
with gr.Row():
prompt1 = gr.Text(
label="Prompt_1",
show_label=False,
max_lines=1,
placeholder="Enter your prompt for the first image",
container=False,
)
with gr.Row():
prompt2 = gr.Text(
label="Prompt_2",
show_label=False,
max_lines=1,
placeholder="Enter your prompt for the second image",
container=False,
)
with gr.Row():
run_button = gr.Button("Run", scale=0, variant="primary")
# Create separate outputs for the first image, last image, and the animated GIF
first_image_output = gr.Image(label="Image if the first prompt", show_label=True)
last_image_output = gr.Image(label="Image if the second prompt", show_label=True)
gif_output = gr.Image(label="Linear interpolation", show_label=True)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=7.0, # Replace with defaults that work for your model
)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of inference steps - 50 inference steps are recommended; but you can reduce to 20 if the demo fails.",
minimum=1,
maximum=50,
step=1,
value=25, # Replace with defaults that work for your model
)
with gr.Row():
num_of_interpolation = gr.Slider(
label="Number of images for interpolation - More images yield smoother transitions but require more resources and may fail.",
minimum=5,
maximum=50,
step=1,
value=10, # Replace with defaults that work for your model
)
gr.Examples(examples=examples, inputs=[prompt1, prompt2])
gr.on(
triggers=[run_button.click, prompt1.submit, prompt2.submit],
fn=infer,
inputs=[
prompt1,
prompt2,
seed,
randomize_seed,
guidance_scale,
num_inference_steps,
num_of_interpolation,
],
outputs=[first_image_output, last_image_output, gif_output, seed],
# outputs=[first_image_output, last_image_output, seed],
)
if __name__ == "__main__":
demo.launch()