CrossFlow / sde.py
QHL067's picture
working
f9567e5
raw
history blame
10.3 kB
import torch
import torch.nn as nn
from absl import logging
import numpy as np
import math
from tqdm import tqdm
import torch.nn.functional as F
def check_zip(*args):
args = [list(arg) for arg in args]
length = len(args[0])
for arg in args:
assert len(arg) == length
return zip(*args)
def get_sde(name, **kwargs):
if name == 'vpsde':
return VPSDE(**kwargs)
elif name == 'vpsde_cosine':
return VPSDECosine(**kwargs)
else:
raise NotImplementedError
def stp(s, ts: torch.Tensor): # scalar tensor product
if isinstance(s, np.ndarray):
s = torch.from_numpy(s).type_as(ts)
extra_dims = (1,) * (ts.dim() - 1)
return s.view(-1, *extra_dims) * ts
def mos(a, start_dim=1): # mean of square
return a.pow(2).flatten(start_dim=start_dim).mean(dim=-1)
def duplicate(tensor, *size):
return tensor.unsqueeze(dim=0).expand(*size, *tensor.shape)
class SDE(object):
r"""
dx = f(x, t)dt + g(t) dw with 0 <= t <= 1
f(x, t) is the drift
g(t) is the diffusion
"""
def drift(self, x, t):
raise NotImplementedError
def diffusion(self, t):
raise NotImplementedError
def cum_beta(self, t): # the variance of xt|x0
raise NotImplementedError
def cum_alpha(self, t):
raise NotImplementedError
def snr(self, t): # signal noise ratio
raise NotImplementedError
def nsr(self, t): # noise signal ratio
raise NotImplementedError
def marginal_prob(self, x0, t): # the mean and std of q(xt|x0)
alpha = self.cum_alpha(t)
beta = self.cum_beta(t)
mean = stp(alpha ** 0.5, x0) # E[xt|x0]
std = beta ** 0.5 # Cov[xt|x0] ** 0.5
return mean, std
def sample(self, x0, t_init=0): # sample from q(xn|x0), where n is uniform
t = torch.rand(x0.shape[0], device=x0.device) * (1. - t_init) + t_init
mean, std = self.marginal_prob(x0, t)
eps = torch.randn_like(x0)
xt = mean + stp(std, eps)
return t, eps, xt
class VPSDE(SDE):
def __init__(self, beta_min=0.1, beta_max=20):
# 0 <= t <= 1
self.beta_0 = beta_min
self.beta_1 = beta_max
def drift(self, x, t):
return -0.5 * stp(self.squared_diffusion(t), x)
def diffusion(self, t):
return self.squared_diffusion(t) ** 0.5
def squared_diffusion(self, t): # beta(t)
return self.beta_0 + t * (self.beta_1 - self.beta_0)
def squared_diffusion_integral(self, s, t): # \int_s^t beta(tau) d tau
return self.beta_0 * (t - s) + (self.beta_1 - self.beta_0) * (t ** 2 - s ** 2) * 0.5
def skip_beta(self, s, t): # beta_{t|s}, Cov[xt|xs]=beta_{t|s} I
return 1. - self.skip_alpha(s, t)
def skip_alpha(self, s, t): # alpha_{t|s}, E[xt|xs]=alpha_{t|s}**0.5 xs
x = -self.squared_diffusion_integral(s, t)
return x.exp()
def cum_beta(self, t):
return self.skip_beta(0, t)
def cum_alpha(self, t):
return self.skip_alpha(0, t)
def nsr(self, t):
nsr = self.squared_diffusion_integral(0, t).expm1()
nsr = nsr.clamp(max = 1e6, min = 1e-12)
return nsr
def snr(self, t):
snr = 1. / self.nsr(t)
snr = snr.clamp(max = 1e6, min = 1e-12)
return snr
def __str__(self):
return f'vpsde beta_0={self.beta_0} beta_1={self.beta_1}'
def __repr__(self):
return f'vpsde beta_0={self.beta_0} beta_1={self.beta_1}'
class VPSDECosine(SDE):
r"""
dx = f(x, t)dt + g(t) dw with 0 <= t <= 1
f(x, t) is the drift
g(t) is the diffusion
"""
def __init__(self, s=0.008):
self.s = s
self.F = lambda t: torch.cos((t + s) / (1 + s) * math.pi / 2) ** 2
self.F0 = math.cos(s / (1 + s) * math.pi / 2) ** 2
def drift(self, x, t):
ft = - torch.tan((t + self.s) / (1 + self.s) * math.pi / 2) / (1 + self.s) * math.pi / 2
return stp(ft, x)
def diffusion(self, t):
return (torch.tan((t + self.s) / (1 + self.s) * math.pi / 2) / (1 + self.s) * math.pi) ** 0.5
def cum_beta(self, t): # the variance of xt|x0
return 1 - self.cum_alpha(t)
def cum_alpha(self, t):
return self.F(t) / self.F0
def snr(self, t): # signal noise ratio
Ft = self.F(t)
snr = Ft / (self.F0 - Ft)
snr = snr.clamp(max = 1e6, min = 1e-12)
return snr
def nsr(self, t): # noise signal ratio
Ft = self.F(t)
nsr = self.F0 / Ft - 1
nsr = nsr.clamp(max = 1e6, min = 1e-12)
return nsr
def __str__(self):
return 'vpsde_cosine'
def __repr__(self):
return 'vpsde_cosine'
class ScoreModel(object):
r"""
The forward process is q(x_[0,T])
"""
def __init__(self, nnet: nn.Module, loss_coeffs:list, sde: SDE, using_cfg: bool = False, T=1):
assert T == 1
self.nnet = nnet
self.loss_coeffs = loss_coeffs
self.sde = sde
self.T = T
self.using_cfg = using_cfg
print(f'ScoreModel with loss_coeffs={loss_coeffs}, sde={sde}, T={T}')
def predict(self, xt, t, **kwargs):
if not isinstance(t, torch.Tensor):
t = torch.tensor(t)
t = t.to(xt.device)
if t.dim() == 0:
t = duplicate(t, xt.size(0))
log_snr = self.sde.snr(t).log()
return self.nnet(xt, t = t * 999, log_snr = log_snr, **kwargs) # follow SDE
# return self.nnet(xt, t = t, log_snr = log_snr, **kwargs) # follow SDE
def noise_pred(self, xt, t, sampling = True, **kwargs):
if sampling:
if self.using_cfg:
return self.predict(xt, t, **kwargs)
else:
return self.predict(xt, t, **kwargs)[-1]
else:
return self.predict(xt, t, **kwargs)
def score(self, xt, t, **kwargs):
cum_beta = self.sde.cum_beta(t)
noise_pred = self.noise_pred(xt, t, sampling = True, **kwargs)
return stp(-cum_beta.rsqrt(), noise_pred)
class ReverseSDE(object):
r"""
dx = [f(x, t) - g(t)^2 s(x, t)] dt + g(t) dw
"""
def __init__(self, score_model):
self.sde = score_model.sde # the forward sde
self.score_model = score_model
def drift(self, x, t, **kwargs):
drift = self.sde.drift(x, t) # f(x, t)
diffusion = self.sde.diffusion(t) # g(t)
score = self.score_model.score(x, t, **kwargs)
return drift - stp(diffusion ** 2, score)
def diffusion(self, t):
return self.sde.diffusion(t)
class ODE(object):
r"""
dx = [f(x, t) - g(t)^2 s(x, t)] dt
"""
def __init__(self, score_model):
self.sde = score_model.sde # the forward sde
self.score_model = score_model
def drift(self, x, t, **kwargs):
drift = self.sde.drift(x, t) # f(x, t)
diffusion = self.sde.diffusion(t) # g(t)
score = self.score_model.score(x, t, **kwargs)
return drift - 0.5 * stp(diffusion ** 2, score)
def diffusion(self, t):
return 0
def dct2str(dct):
return str({k: f'{v:.6g}' for k, v in dct.items()})
@ torch.no_grad()
def euler_maruyama(rsde, x_init, sample_steps, eps=1e-3, T=1, trace=None, verbose=False, **kwargs):
r"""
The Euler Maruyama sampler for reverse SDE / ODE
See `Score-Based Generative Modeling through Stochastic Differential Equations`
"""
assert isinstance(rsde, ReverseSDE) or isinstance(rsde, ODE)
print(f"euler_maruyama with sample_steps={sample_steps}")
timesteps = np.append(0., np.linspace(eps, T, sample_steps))
timesteps = torch.tensor(timesteps).to(x_init)
x = x_init
if trace is not None:
trace.append(x)
for s, t in tqdm(list(zip(timesteps, timesteps[1:]))[::-1], disable=not verbose, desc='euler_maruyama'):
drift = rsde.drift(x, t, **kwargs)
diffusion = rsde.diffusion(t)
dt = s - t
mean = x + drift * dt
sigma = diffusion * (-dt).sqrt()
x = mean + stp(sigma, torch.randn_like(x)) if s != 0 else mean
if trace is not None:
trace.append(x)
statistics = dict(s=s, t=t, sigma=sigma.item())
logging.debug(dct2str(statistics))
return x
def LSimple(score_model: ScoreModel, x0, **kwargs):
t, noise, xt = score_model.sde.sample(x0)
prediction = score_model.noise_pred(xt, t, sampling = False, **kwargs)
target = multi_scale_targets(noise, levels = len(prediction), scale_correction = True)
loss = 0
for pred, coeff in check_zip(prediction, score_model.loss_coeffs):
loss = loss + coeff * mos(pred - target[pred.shape[-1]])
return loss
def odd_multi_scale_targets(target, levels, scale_correction):
B, C, H, W = target.shape
targets = {}
for l in range(levels):
ratio = int(2 ** l)
if ratio == 1:
targets[target.shape[-1]] = target
continue
assert (H - 1) % ratio == 0 and (W - 1) % ratio == 0
KS = ratio + 1
scale = KS if scale_correction else KS ** 2
kernel = torch.ones(C, 1, KS, KS, device = target.device) / scale
downsampled = F.conv2d(target, kernel, stride = ratio, padding = KS // 2, groups = C)
targets[downsampled.shape[-1]] = downsampled
return targets
def even_multi_scale_targets(target, levels, scale_correction):
B, C, H, W = target.shape
targets = {}
for l in range(levels):
ratio = int(2 ** l)
if ratio == 1:
targets[target.shape[-1]] = target
continue
assert H % ratio == 0 and W % ratio == 0
KS = ratio
scale = KS if scale_correction else KS ** 2
kernel = torch.ones(C, 1, KS, KS, device = target.device) / scale
downsampled = F.conv2d(target, kernel, stride = ratio, groups = C)
targets[downsampled.shape[-1]] = downsampled
return targets
def multi_scale_targets(target, levels, scale_correction):
B, C, H, W = target.shape
if H % 2 == 0:
return even_multi_scale_targets(target, levels, scale_correction)
else:
return odd_multi_scale_targets(target, levels, scale_correction)