CrossFlow / app.py
QHL067's picture
256
7a820f6
raw
history blame
12.6 kB
import gradio as gr
from absl import flags
from absl import app
from ml_collections import config_flags
import os
import spaces #[uncomment to use ZeroGPU]
import torch
import io
import random
import tempfile
import numpy as np
import torch
import torch.nn.functional as F
from torchvision.utils import save_image
from torchvision.transforms import ToPILImage
from huggingface_hub import hf_hub_download
from absl import logging
import ml_collections
from diffusion.flow_matching import ODEEulerFlowMatchingSolver
import utils
import libs.autoencoder
from libs.clip import FrozenCLIPEmbedder
from configs import t2i_512px_clip_dimr, t2i_256px_clip_dimr
def unpreprocess(x: torch.Tensor) -> torch.Tensor:
x = 0.5 * (x + 1.0)
x.clamp_(0.0, 1.0)
return x
def cosine_similarity_torch(latent1: torch.Tensor, latent2: torch.Tensor) -> torch.Tensor:
latent1_flat = latent1.view(-1)
latent2_flat = latent2.view(-1)
cosine_similarity = F.cosine_similarity(
latent1_flat.unsqueeze(0), latent2_flat.unsqueeze(0), dim=1
)
return cosine_similarity
def kl_divergence(latent1: torch.Tensor, latent2: torch.Tensor) -> torch.Tensor:
latent1_prob = F.softmax(latent1, dim=-1)
latent2_prob = F.softmax(latent2, dim=-1)
latent1_log_prob = torch.log(latent1_prob)
kl_div = F.kl_div(latent1_log_prob, latent2_prob, reduction="batchmean")
return kl_div
def batch_decode(_z: torch.Tensor, decode, batch_size: int = 10) -> torch.Tensor:
num_samples = _z.size(0)
decoded_batches = []
for i in range(0, num_samples, batch_size):
batch = _z[i : i + batch_size]
decoded_batch = decode(batch)
decoded_batches.append(decoded_batch)
return torch.cat(decoded_batches, dim=0)
def get_caption(llm: str, text_model, prompt_dict: dict, batch_size: int):
if batch_size == 3:
# Only addition or only subtraction mode.
assert len(prompt_dict) == 2, "Expected 2 prompts for batch_size 3."
batch_prompts = list(prompt_dict.values()) + [" "]
elif batch_size == 4:
# Addition and subtraction mode.
assert len(prompt_dict) == 3, "Expected 3 prompts for batch_size 4."
batch_prompts = list(prompt_dict.values()) + [" "]
elif batch_size >= 5:
# Linear interpolation mode.
assert len(prompt_dict) == 2, "Expected 2 prompts for linear interpolation."
batch_prompts = [prompt_dict["prompt_1"]] + [" "] * (batch_size - 2) + [prompt_dict["prompt_2"]]
else:
raise ValueError(f"Unsupported batch_size: {batch_size}")
if llm == "clip":
latent, latent_and_others = text_model.encode(batch_prompts)
context = latent_and_others["token_embedding"].detach()
elif llm == "t5":
latent, latent_and_others = text_model.get_text_embeddings(batch_prompts)
context = (latent_and_others["token_embedding"] * 10.0).detach()
else:
raise NotImplementedError(f"Language model {llm} not supported.")
token_mask = latent_and_others["token_mask"].detach()
tokens = latent_and_others["tokens"].detach()
captions = batch_prompts
return context, token_mask, tokens, captions
# Load configuration and initialize models.
# config_dict = t2i_512px_clip_dimr.get_config()
config_dict = t2i_256px_clip_dimr.get_config()
config = ml_collections.ConfigDict(config_dict)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logging.info(f"Using device: {device}")
# Freeze configuration.
config = ml_collections.FrozenConfigDict(config)
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024 # Currently not used.
# Load the main diffusion model.
repo_id = "QHL067/CrossFlow"
# filename = "pretrained_models/t2i_512px_clip_dimr.pth"
filename = "pretrained_models/t2i_256px_clip_dimr.pth"
checkpoint_path = hf_hub_download(repo_id=repo_id, filename=filename)
nnet = utils.get_nnet(**config.nnet)
nnet = nnet.to(device)
state_dict = torch.load(checkpoint_path, map_location=device)
nnet.load_state_dict(state_dict)
nnet.eval()
# Initialize text model.
llm = "clip"
clip = FrozenCLIPEmbedder()
clip.eval()
clip.to(device)
# Load autoencoder.
autoencoder = libs.autoencoder.get_model(**config.autoencoder)
autoencoder.to(device)
@torch.cuda.amp.autocast()
def encode(_batch: torch.Tensor) -> torch.Tensor:
"""Encode a batch of images using the autoencoder."""
return autoencoder.encode(_batch)
@torch.cuda.amp.autocast()
def decode(_batch: torch.Tensor) -> torch.Tensor:
"""Decode a batch of latent vectors using the autoencoder."""
return autoencoder.decode(_batch)
@spaces.GPU #[uncomment to use ZeroGPU]
def infer(
prompt1,
prompt2,
seed,
randomize_seed,
guidance_scale,
num_inference_steps,
num_of_interpolation,
save_gpu_memory=True,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
torch.manual_seed(seed)
if device.type == "cuda":
torch.cuda.manual_seed_all(seed)
# Only support interpolation in this implementation.
prompt_dict = {"prompt_1": prompt1, "prompt_2": prompt2}
for key, value in prompt_dict.items():
assert value is not None, f"{key} must not be None."
assert num_of_interpolation >= 5, "For linear interpolation, please sample at least five images."
# Get text embeddings and tokens.
_context, _token_mask, _token, _caption = get_caption(
llm, clip, prompt_dict=prompt_dict, batch_size=num_of_interpolation
)
with torch.no_grad():
_z_gaussian = torch.randn(num_of_interpolation, *config.z_shape, device=device)
_z_x0, _mu, _log_var = nnet(
_context, text_encoder=True, shape=_z_gaussian.shape, mask=_token_mask
)
_z_init = _z_x0.reshape(_z_gaussian.shape)
# Prepare the initial latent representations based on the number of interpolations.
if num_of_interpolation == 3:
# Addition or subtraction mode.
if config.prompt_a is not None:
assert config.prompt_s is None, "Only one of prompt_a or prompt_s should be provided."
z_init_temp = _z_init[0] + _z_init[1]
elif config.prompt_s is not None:
assert config.prompt_a is None, "Only one of prompt_a or prompt_s should be provided."
z_init_temp = _z_init[0] - _z_init[1]
else:
raise NotImplementedError("Either prompt_a or prompt_s must be provided for 3-sample mode.")
mean = z_init_temp.mean()
std = z_init_temp.std()
_z_init[2] = (z_init_temp - mean) / std
elif num_of_interpolation == 4:
z_init_temp = _z_init[0] + _z_init[1] - _z_init[2]
mean = z_init_temp.mean()
std = z_init_temp.std()
_z_init[3] = (z_init_temp - mean) / std
elif num_of_interpolation >= 5:
tensor_a = _z_init[0]
tensor_b = _z_init[-1]
num_interpolations = num_of_interpolation - 2
interpolations = [
tensor_a + (tensor_b - tensor_a) * (i / (num_interpolations + 1))
for i in range(1, num_interpolations + 1)
]
_z_init = torch.stack([tensor_a] + interpolations + [tensor_b], dim=0)
else:
raise ValueError("Unsupported number of interpolations.")
assert guidance_scale > 1, "Guidance scale must be greater than 1."
has_null_indicator = hasattr(config.nnet.model_args, "cfg_indicator")
ode_solver = ODEEulerFlowMatchingSolver(
nnet,
bdv_model_fn=None,
step_size_type="step_in_dsigma",
guidance_scale=guidance_scale,
)
_z, _ = ode_solver.sample(
x_T=_z_init,
batch_size=num_of_interpolation,
sample_steps=num_inference_steps,
unconditional_guidance_scale=guidance_scale,
has_null_indicator=has_null_indicator,
)
if save_gpu_memory:
image_unprocessed = batch_decode(_z, decode)
else:
image_unprocessed = decode(_z)
samples = unpreprocess(image_unprocessed).contiguous()
to_pil = ToPILImage()
pil_images = [to_pil(img) for img in samples]
first_image = pil_images[0]
last_image = pil_images[-1]
gif_buffer = io.BytesIO()
pil_images[0].save(gif_buffer, format="GIF", save_all=True, append_images=pil_images[1:], duration=10, loop=0)
gif_buffer.seek(0)
gif_bytes = gif_buffer.read()
# Save the GIF bytes to a temporary file and get its path
temp_gif = tempfile.NamedTemporaryFile(delete=False, suffix=".gif")
temp_gif.write(gif_bytes)
temp_gif.close()
gif_path = temp_gif.name
return first_image, last_image, gif_path, seed
# return first_image, last_image, seed
# examples = [
# "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
# "An astronaut riding a green horse",
# "A delicious ceviche cheesecake slice",
# ]
examples = [
["A dog cooking dinner in the kitchen", "An orange cat wearing sunglasses on a ship"],
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# CrossFlow")
gr.Markdown("CrossFlow directly transforms text representations into images for text-to-image generation, enabling interpolation in the input text latent space.")
with gr.Row():
prompt1 = gr.Text(
label="Prompt_1",
show_label=False,
max_lines=1,
placeholder="Enter your prompt for the first image",
container=False,
)
with gr.Row():
prompt2 = gr.Text(
label="Prompt_2",
show_label=False,
max_lines=1,
placeholder="Enter your prompt for the second image",
container=False,
)
with gr.Row():
run_button = gr.Button("Run", scale=0, variant="primary")
# Create separate outputs for the first image, last image, and the animated GIF
first_image_output = gr.Image(label="Image if the first prompt", show_label=True)
last_image_output = gr.Image(label="Image if the second prompt", show_label=True)
gif_output = gr.Image(label="Linear interpolation", show_label=True)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=7.0, # Replace with defaults that work for your model
)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of inference steps - 50 inference steps are recommended; but you can reduce to 20 if the demo fails.",
minimum=1,
maximum=50,
step=1,
value=50, # Replace with defaults that work for your model
)
with gr.Row():
num_of_interpolation = gr.Slider(
label="Number of images for interpolation - More images yield smoother transitions but require more resources and may fail.",
minimum=5,
maximum=50,
step=1,
value=5, # Replace with defaults that work for your model
)
gr.Examples(examples=examples, inputs=[prompt1, prompt2])
gr.on(
triggers=[run_button.click, prompt1.submit, prompt2.submit],
fn=infer,
inputs=[
prompt1,
prompt2,
seed,
randomize_seed,
guidance_scale,
num_inference_steps,
num_of_interpolation,
],
outputs=[first_image_output, last_image_output, gif_output, seed],
# outputs=[first_image_output, last_image_output, seed],
)
if __name__ == "__main__":
demo.launch()