File size: 10,259 Bytes
f9567e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
import torch
import torch.nn as nn
from absl import logging
import numpy as np
import math
from tqdm import tqdm
import torch.nn.functional as F
def check_zip(*args):
args = [list(arg) for arg in args]
length = len(args[0])
for arg in args:
assert len(arg) == length
return zip(*args)
def get_sde(name, **kwargs):
if name == 'vpsde':
return VPSDE(**kwargs)
elif name == 'vpsde_cosine':
return VPSDECosine(**kwargs)
else:
raise NotImplementedError
def stp(s, ts: torch.Tensor): # scalar tensor product
if isinstance(s, np.ndarray):
s = torch.from_numpy(s).type_as(ts)
extra_dims = (1,) * (ts.dim() - 1)
return s.view(-1, *extra_dims) * ts
def mos(a, start_dim=1): # mean of square
return a.pow(2).flatten(start_dim=start_dim).mean(dim=-1)
def duplicate(tensor, *size):
return tensor.unsqueeze(dim=0).expand(*size, *tensor.shape)
class SDE(object):
r"""
dx = f(x, t)dt + g(t) dw with 0 <= t <= 1
f(x, t) is the drift
g(t) is the diffusion
"""
def drift(self, x, t):
raise NotImplementedError
def diffusion(self, t):
raise NotImplementedError
def cum_beta(self, t): # the variance of xt|x0
raise NotImplementedError
def cum_alpha(self, t):
raise NotImplementedError
def snr(self, t): # signal noise ratio
raise NotImplementedError
def nsr(self, t): # noise signal ratio
raise NotImplementedError
def marginal_prob(self, x0, t): # the mean and std of q(xt|x0)
alpha = self.cum_alpha(t)
beta = self.cum_beta(t)
mean = stp(alpha ** 0.5, x0) # E[xt|x0]
std = beta ** 0.5 # Cov[xt|x0] ** 0.5
return mean, std
def sample(self, x0, t_init=0): # sample from q(xn|x0), where n is uniform
t = torch.rand(x0.shape[0], device=x0.device) * (1. - t_init) + t_init
mean, std = self.marginal_prob(x0, t)
eps = torch.randn_like(x0)
xt = mean + stp(std, eps)
return t, eps, xt
class VPSDE(SDE):
def __init__(self, beta_min=0.1, beta_max=20):
# 0 <= t <= 1
self.beta_0 = beta_min
self.beta_1 = beta_max
def drift(self, x, t):
return -0.5 * stp(self.squared_diffusion(t), x)
def diffusion(self, t):
return self.squared_diffusion(t) ** 0.5
def squared_diffusion(self, t): # beta(t)
return self.beta_0 + t * (self.beta_1 - self.beta_0)
def squared_diffusion_integral(self, s, t): # \int_s^t beta(tau) d tau
return self.beta_0 * (t - s) + (self.beta_1 - self.beta_0) * (t ** 2 - s ** 2) * 0.5
def skip_beta(self, s, t): # beta_{t|s}, Cov[xt|xs]=beta_{t|s} I
return 1. - self.skip_alpha(s, t)
def skip_alpha(self, s, t): # alpha_{t|s}, E[xt|xs]=alpha_{t|s}**0.5 xs
x = -self.squared_diffusion_integral(s, t)
return x.exp()
def cum_beta(self, t):
return self.skip_beta(0, t)
def cum_alpha(self, t):
return self.skip_alpha(0, t)
def nsr(self, t):
nsr = self.squared_diffusion_integral(0, t).expm1()
nsr = nsr.clamp(max = 1e6, min = 1e-12)
return nsr
def snr(self, t):
snr = 1. / self.nsr(t)
snr = snr.clamp(max = 1e6, min = 1e-12)
return snr
def __str__(self):
return f'vpsde beta_0={self.beta_0} beta_1={self.beta_1}'
def __repr__(self):
return f'vpsde beta_0={self.beta_0} beta_1={self.beta_1}'
class VPSDECosine(SDE):
r"""
dx = f(x, t)dt + g(t) dw with 0 <= t <= 1
f(x, t) is the drift
g(t) is the diffusion
"""
def __init__(self, s=0.008):
self.s = s
self.F = lambda t: torch.cos((t + s) / (1 + s) * math.pi / 2) ** 2
self.F0 = math.cos(s / (1 + s) * math.pi / 2) ** 2
def drift(self, x, t):
ft = - torch.tan((t + self.s) / (1 + self.s) * math.pi / 2) / (1 + self.s) * math.pi / 2
return stp(ft, x)
def diffusion(self, t):
return (torch.tan((t + self.s) / (1 + self.s) * math.pi / 2) / (1 + self.s) * math.pi) ** 0.5
def cum_beta(self, t): # the variance of xt|x0
return 1 - self.cum_alpha(t)
def cum_alpha(self, t):
return self.F(t) / self.F0
def snr(self, t): # signal noise ratio
Ft = self.F(t)
snr = Ft / (self.F0 - Ft)
snr = snr.clamp(max = 1e6, min = 1e-12)
return snr
def nsr(self, t): # noise signal ratio
Ft = self.F(t)
nsr = self.F0 / Ft - 1
nsr = nsr.clamp(max = 1e6, min = 1e-12)
return nsr
def __str__(self):
return 'vpsde_cosine'
def __repr__(self):
return 'vpsde_cosine'
class ScoreModel(object):
r"""
The forward process is q(x_[0,T])
"""
def __init__(self, nnet: nn.Module, loss_coeffs:list, sde: SDE, using_cfg: bool = False, T=1):
assert T == 1
self.nnet = nnet
self.loss_coeffs = loss_coeffs
self.sde = sde
self.T = T
self.using_cfg = using_cfg
print(f'ScoreModel with loss_coeffs={loss_coeffs}, sde={sde}, T={T}')
def predict(self, xt, t, **kwargs):
if not isinstance(t, torch.Tensor):
t = torch.tensor(t)
t = t.to(xt.device)
if t.dim() == 0:
t = duplicate(t, xt.size(0))
log_snr = self.sde.snr(t).log()
return self.nnet(xt, t = t * 999, log_snr = log_snr, **kwargs) # follow SDE
# return self.nnet(xt, t = t, log_snr = log_snr, **kwargs) # follow SDE
def noise_pred(self, xt, t, sampling = True, **kwargs):
if sampling:
if self.using_cfg:
return self.predict(xt, t, **kwargs)
else:
return self.predict(xt, t, **kwargs)[-1]
else:
return self.predict(xt, t, **kwargs)
def score(self, xt, t, **kwargs):
cum_beta = self.sde.cum_beta(t)
noise_pred = self.noise_pred(xt, t, sampling = True, **kwargs)
return stp(-cum_beta.rsqrt(), noise_pred)
class ReverseSDE(object):
r"""
dx = [f(x, t) - g(t)^2 s(x, t)] dt + g(t) dw
"""
def __init__(self, score_model):
self.sde = score_model.sde # the forward sde
self.score_model = score_model
def drift(self, x, t, **kwargs):
drift = self.sde.drift(x, t) # f(x, t)
diffusion = self.sde.diffusion(t) # g(t)
score = self.score_model.score(x, t, **kwargs)
return drift - stp(diffusion ** 2, score)
def diffusion(self, t):
return self.sde.diffusion(t)
class ODE(object):
r"""
dx = [f(x, t) - g(t)^2 s(x, t)] dt
"""
def __init__(self, score_model):
self.sde = score_model.sde # the forward sde
self.score_model = score_model
def drift(self, x, t, **kwargs):
drift = self.sde.drift(x, t) # f(x, t)
diffusion = self.sde.diffusion(t) # g(t)
score = self.score_model.score(x, t, **kwargs)
return drift - 0.5 * stp(diffusion ** 2, score)
def diffusion(self, t):
return 0
def dct2str(dct):
return str({k: f'{v:.6g}' for k, v in dct.items()})
@ torch.no_grad()
def euler_maruyama(rsde, x_init, sample_steps, eps=1e-3, T=1, trace=None, verbose=False, **kwargs):
r"""
The Euler Maruyama sampler for reverse SDE / ODE
See `Score-Based Generative Modeling through Stochastic Differential Equations`
"""
assert isinstance(rsde, ReverseSDE) or isinstance(rsde, ODE)
print(f"euler_maruyama with sample_steps={sample_steps}")
timesteps = np.append(0., np.linspace(eps, T, sample_steps))
timesteps = torch.tensor(timesteps).to(x_init)
x = x_init
if trace is not None:
trace.append(x)
for s, t in tqdm(list(zip(timesteps, timesteps[1:]))[::-1], disable=not verbose, desc='euler_maruyama'):
drift = rsde.drift(x, t, **kwargs)
diffusion = rsde.diffusion(t)
dt = s - t
mean = x + drift * dt
sigma = diffusion * (-dt).sqrt()
x = mean + stp(sigma, torch.randn_like(x)) if s != 0 else mean
if trace is not None:
trace.append(x)
statistics = dict(s=s, t=t, sigma=sigma.item())
logging.debug(dct2str(statistics))
return x
def LSimple(score_model: ScoreModel, x0, **kwargs):
t, noise, xt = score_model.sde.sample(x0)
prediction = score_model.noise_pred(xt, t, sampling = False, **kwargs)
target = multi_scale_targets(noise, levels = len(prediction), scale_correction = True)
loss = 0
for pred, coeff in check_zip(prediction, score_model.loss_coeffs):
loss = loss + coeff * mos(pred - target[pred.shape[-1]])
return loss
def odd_multi_scale_targets(target, levels, scale_correction):
B, C, H, W = target.shape
targets = {}
for l in range(levels):
ratio = int(2 ** l)
if ratio == 1:
targets[target.shape[-1]] = target
continue
assert (H - 1) % ratio == 0 and (W - 1) % ratio == 0
KS = ratio + 1
scale = KS if scale_correction else KS ** 2
kernel = torch.ones(C, 1, KS, KS, device = target.device) / scale
downsampled = F.conv2d(target, kernel, stride = ratio, padding = KS // 2, groups = C)
targets[downsampled.shape[-1]] = downsampled
return targets
def even_multi_scale_targets(target, levels, scale_correction):
B, C, H, W = target.shape
targets = {}
for l in range(levels):
ratio = int(2 ** l)
if ratio == 1:
targets[target.shape[-1]] = target
continue
assert H % ratio == 0 and W % ratio == 0
KS = ratio
scale = KS if scale_correction else KS ** 2
kernel = torch.ones(C, 1, KS, KS, device = target.device) / scale
downsampled = F.conv2d(target, kernel, stride = ratio, groups = C)
targets[downsampled.shape[-1]] = downsampled
return targets
def multi_scale_targets(target, levels, scale_correction):
B, C, H, W = target.shape
if H % 2 == 0:
return even_multi_scale_targets(target, levels, scale_correction)
else:
return odd_multi_scale_targets(target, levels, scale_correction) |