File size: 5,779 Bytes
f9567e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
"""
This file is used to extract feature of the demo training data.
"""
import os
import shutil
import sys
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
import torch
import torch.nn as nn
import os
import numpy as np
from tqdm import tqdm
from PIL import Image
import io
import einops
import random
import json
import libs.autoencoder
from libs.clip import FrozenCLIPEmbedder
from libs.t5 import T5Embedder
def recreate_folder(folder_path):
if os.path.exists(folder_path):
shutil.rmtree(folder_path)
os.makedirs(folder_path)
def center_crop_arr(pil_image, image_size):
while min(*pil_image.size) >= 2 * image_size:
pil_image = pil_image.resize(
tuple(x // 2 for x in pil_image.size), resample=Image.BOX
)
scale = image_size / min(*pil_image.size)
pil_image = pil_image.resize(
tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC
)
arr = np.array(pil_image)
crop_y = (arr.shape[0] - image_size) // 2
crop_x = (arr.shape[1] - image_size) // 2
return arr[crop_y : crop_y + image_size, crop_x : crop_x + image_size]
def main(bz = 16):
json_path = '/path/to/JourneyDB_demo/img_text_pair.jsonl'
root_path = '/path/to/JourneyDB_demo/imgs'
dicts_list = []
with open(json_path, 'r', encoding='utf-8') as file:
for line in file:
dicts_list.append(json.loads(line))
save_dir = f'feature'
device = "cuda"
recreate_folder(save_dir)
autoencoder = libs.autoencoder.get_model('../assets/stable-diffusion/autoencoder_kl.pth')
autoencoder.to(device)
# CLIP model:
clip = FrozenCLIPEmbedder()
clip.eval()
clip.to(device)
# T5 model:
t5 = T5Embedder(device=device)
idx = 0
batch_img_256 = []
batch_img_512 = []
batch_caption = []
batch_name = []
for i, sample in enumerate(tqdm(dicts_list)):
try:
pil_image = Image.open(os.path.join(root_path,sample['img_path']))
caption = sample['prompt']
img_name = sample['img_path'].replace('.jpg','')
pil_image.load()
pil_image = pil_image.convert("RGB")
except:
with open("failed_file.txt", 'a+') as file:
file.write(sample['img_path'] + "\n")
continue
image_256 = center_crop_arr(pil_image, image_size=256)
image_512 = center_crop_arr(pil_image, image_size=512)
# if True:
# image_id = random.randint(0,20)
# Image.fromarray(image_256.astype(np.uint8)).save(f"temp_img_{image_id}_256.jpg")
# Image.fromarray(image_512.astype(np.uint8)).save(f"temp_img_{image_id}_512.jpg")
image_256 = (image_256 / 127.5 - 1.0).astype(np.float32)
image_256 = einops.rearrange(image_256, 'h w c -> c h w')
batch_img_256.append(image_256)
image_512 = (image_512 / 127.5 - 1.0).astype(np.float32)
image_512 = einops.rearrange(image_512, 'h w c -> c h w')
batch_img_512.append(image_512)
batch_caption.append(caption)
batch_name.append(img_name)
if len(batch_name) == bz or i == len(dicts_list) - 1:
batch_img_256 = torch.tensor(np.stack(batch_img_256)).to(device)
moments_256 = autoencoder(batch_img_256, fn='encode_moments').squeeze(0)
moments_256 = moments_256.detach().cpu().numpy()
batch_img_512 = torch.tensor(np.stack(batch_img_512)).to(device)
moments_512 = autoencoder(batch_img_512, fn='encode_moments').squeeze(0)
moments_512 = moments_512.detach().cpu().numpy()
_latent_clip, latent_and_others_clip = clip.encode(batch_caption)
token_embedding_clip = latent_and_others_clip['token_embedding'].detach().cpu().numpy()
token_mask_clip = latent_and_others_clip['token_mask'].detach().cpu().numpy()
token_clip = latent_and_others_clip['tokens'].detach().cpu().numpy()
_latent_t5, latent_and_others_t5 = t5.get_text_embeddings(batch_caption)
token_embedding_t5 = (latent_and_others_t5['token_embedding'].to(torch.float32) * 10.0).detach().cpu().numpy()
token_mask_t5 = latent_and_others_t5['token_mask'].detach().cpu().numpy()
token_t5 = latent_and_others_t5['tokens'].detach().cpu().numpy()
for mt_256, mt_512, te_c, te_t, tm_c, tm_t, tk_c, tk_t, bc, bn in zip(moments_256, moments_512, token_embedding_clip, token_embedding_t5, token_mask_clip, token_mask_t5, token_clip, token_t5, batch_caption, batch_name):
assert mt_256.shape == (8,32,32)
assert mt_512.shape == (8,64,64)
assert te_c.shape == (77, 768)
assert te_t.shape == (77, 4096)
tar_path_name = os.path.join(save_dir, f'{bn}.npy')
if os.path.exists(tar_path_name):
os.remove(tar_path_name)
data = {'image_latent_256': mt_256,
'image_latent_512': mt_512,
'token_embedding_clip': te_c,
'token_embedding_t5': te_t,
'token_mask_clip': tm_c,
'token_mask_t5': tm_t,
'token_clip': tk_c,
'token_t5': tk_t,
'batch_caption': bc}
try:
np.save(tar_path_name, data)
idx += 1
except:
pass
batch_img_256 = []
batch_img_512 = []
batch_caption = []
batch_name = []
print(f'save {idx} files')
if __name__ == '__main__':
main()
|