File size: 25,502 Bytes
f9567e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 |
import logging
from typing import Callable, Dict, Optional, Tuple
import torch
import torch.nn as nn
from torch.nn import functional as F
import torchdiffeq
import random
from sde import multi_scale_targets
from diffusion.base_solver import Solver
import numpy as np
from torchvision import transforms
def check_zip(*args):
args = [list(arg) for arg in args]
length = len(args[0])
for arg in args:
assert len(arg) == length
return zip(*args)
def kl_divergence(source, target):
q_raw = source.view(-1)
p_raw = target.view(-1)
p = F.softmax(p_raw, dim=0)
q = F.softmax(q_raw, dim=0)
q_log = torch.log(q)
kl_div_1 = F.kl_div(q_log, p, reduction='sum')
return kl_div_1
class TimeStepSampler:
"""
Abstract class to sample timesteps for flow matching.
"""
def sample_time(self, x_start):
# In flow matching, time is in range [0, 1] and 1 indicates the original image; 0 is pure noise
# this convention is *REVERSE* of diffusion
raise NotImplementedError
class ClipLoss(nn.Module):
def __init__(
self,
local_loss=False,
gather_with_grad=False,
cache_labels=False,
rank=0,
world_size=1,
use_horovod=False,
):
super().__init__()
self.local_loss = local_loss
self.gather_with_grad = gather_with_grad
self.cache_labels = cache_labels
self.rank = rank
self.world_size = world_size
self.use_horovod = use_horovod
# cache state
self.prev_num_logits = 0
self.labels = {}
def get_ground_truth(self, device, num_logits) -> torch.Tensor:
# calculated ground-truth and cache if enabled
if self.prev_num_logits != num_logits or device not in self.labels:
labels = torch.arange(num_logits, device=device, dtype=torch.long)
if self.world_size > 1 and self.local_loss:
labels = labels + num_logits * self.rank
if self.cache_labels:
self.labels[device] = labels
self.prev_num_logits = num_logits
else:
labels = self.labels[device]
return labels
def get_logits(self, image_features, text_features, logit_scale):
if self.world_size > 1:
all_image_features, all_text_features = gather_features(
image_features, text_features,
self.local_loss, self.gather_with_grad, self.rank, self.world_size, self.use_horovod)
if self.local_loss:
logits_per_image = logit_scale * image_features @ all_text_features.T
logits_per_text = logit_scale * text_features @ all_image_features.T
else:
logits_per_image = logit_scale * all_image_features @ all_text_features.T
logits_per_text = logits_per_image.T
else:
logits_per_image = logit_scale * image_features @ text_features.T
logits_per_text = logit_scale * text_features @ image_features.T
return logits_per_image, logits_per_text
def forward(self, image_features, text_features, logit_scale, output_dict=False):
device = image_features.device
logits_per_image, logits_per_text = self.get_logits(image_features, text_features, logit_scale)
labels = self.get_ground_truth(device, logits_per_image.shape[0])
total_loss = (
F.cross_entropy(logits_per_image, labels) +
F.cross_entropy(logits_per_text, labels)
) / 2
return {"contrastive_loss": total_loss} if output_dict else total_loss
class SigLipLoss(nn.Module):
""" Sigmoid Loss for Language Image Pre-Training (SigLIP) - https://arxiv.org/abs/2303.15343
@article{zhai2023sigmoid,
title={Sigmoid loss for language image pre-training},
author={Zhai, Xiaohua and Mustafa, Basil and Kolesnikov, Alexander and Beyer, Lucas},
journal={arXiv preprint arXiv:2303.15343},
year={2023}
}
"""
def __init__(
self,
cache_labels=False,
rank=0,
world_size=1,
bidir=True,
use_horovod=False,
):
super().__init__()
self.cache_labels = cache_labels
self.rank = rank
self.world_size = world_size
assert not use_horovod # FIXME need to look at hvd ops for ring transfers
self.use_horovod = use_horovod
self.bidir = bidir
# cache state FIXME cache not currently used, worthwhile?
self.prev_num_logits = 0
self.labels = {}
def get_ground_truth(self, device, dtype, num_logits, negative_only=False) -> torch.Tensor:
labels = -torch.ones((num_logits, num_logits), device=device, dtype=dtype)
if not negative_only:
labels = 2 * torch.eye(num_logits, device=device, dtype=dtype) + labels
return labels
def get_logits(self, image_features, text_features, logit_scale, logit_bias=None):
logits = logit_scale * image_features @ text_features.T
if logit_bias is not None:
logits += logit_bias
return logits
def _loss(self, image_features, text_features, logit_scale, logit_bias=None, negative_only=False):
logits = self.get_logits(image_features, text_features, logit_scale, logit_bias)
labels = self.get_ground_truth(
image_features.device,
image_features.dtype,
image_features.shape[0],
negative_only=negative_only,
)
loss = -F.logsigmoid(labels * logits).sum() / image_features.shape[0]
return loss
def forward(self, image_features, text_features, logit_scale, logit_bias, output_dict=False):
loss = self._loss(image_features, text_features, logit_scale, logit_bias)
if self.world_size > 1:
# exchange text features w/ neighbour world_size - 1 times
right_rank = (self.rank + 1) % self.world_size
left_rank = (self.rank - 1 + self.world_size) % self.world_size
if self.bidir:
text_features_to_right = text_features_to_left = text_features
num_bidir, remainder = divmod(self.world_size - 1, 2)
for i in range(num_bidir):
text_features_recv = neighbour_exchange_bidir_with_grad(
left_rank,
right_rank,
text_features_to_left,
text_features_to_right,
)
for f in text_features_recv:
loss += self._loss(
image_features,
f,
logit_scale,
logit_bias,
negative_only=True,
)
text_features_to_left, text_features_to_right = text_features_recv
if remainder:
text_features_recv = neighbour_exchange_with_grad(
left_rank, right_rank, text_features_to_right)
loss += self._loss(
image_features,
text_features_recv,
logit_scale,
logit_bias,
negative_only=True,
)
else:
text_features_to_right = text_features
for i in range(self.world_size - 1):
text_features_from_left = neighbour_exchange_with_grad(
left_rank, right_rank, text_features_to_right)
loss += self._loss(
image_features,
text_features_from_left,
logit_scale,
logit_bias,
negative_only=True,
)
text_features_to_right = text_features_from_left
return {"contrastive_loss": loss} if output_dict else loss
class ResolutionScaledTimeStepSampler(TimeStepSampler):
def __init__(self, scale: float, base_time_step_sampler: TimeStepSampler):
self.scale = scale
self.base_time_step_sampler = base_time_step_sampler
@torch.no_grad()
def sample_time(self, x_start):
base_time = self.base_time_step_sampler.sample_time(x_start)
# based on eq (23) of https://arxiv.org/abs/2403.03206
scaled_time = (base_time * self.scale) / (1 + (self.scale - 1) * base_time)
return scaled_time
class LogitNormalSampler(TimeStepSampler):
def __init__(self, normal_mean: float = 0, normal_std: float = 1):
# follows https://arxiv.org/pdf/2403.03206.pdf
# sample from a normal distribution
# pass the output through standard logistic function, i.e., sigmoid
self.normal_mean = float(normal_mean)
self.normal_std = float(normal_std)
@torch.no_grad()
def sample_time(self, x_start):
x_normal = torch.normal(
mean=self.normal_mean,
std=self.normal_std,
size=(x_start.shape[0],),
device=x_start.device,
)
x_logistic = torch.nn.functional.sigmoid(x_normal)
return x_logistic
class UniformTimeSampler(TimeStepSampler):
@torch.no_grad()
def sample_time(self, x_start):
# [0, 1] and 1 indicates the original image; 0 is pure noise
return torch.rand(x_start.shape[0], device=x_start.device)
class FlowMatching(nn.Module):
def __init__(
self,
sigma_min: float = 1e-5,
sigma_max: float = 1.0,
timescale: float = 1.0,
**kwargs,
):
# LatentDiffusion/DDPM will create too many class variables we do not need
super().__init__(**kwargs)
self.time_step_sampler = LogitNormalSampler()
self.sigma_min = sigma_min
self.sigma_max = sigma_max
self.timescale = timescale
self.clip_loss = ClipLoss()
# self.SigLipLoss = SigLipLoss()
self.resizer = transforms.Resize(256) # for clip
def sample_noise(self, x_start):
# simple IID noise
return torch.randn_like(x_start, device=x_start.device) * self.sigma_max
def mos(self, err, start_dim=1, con_mask=None): # mean of square
if con_mask is not None:
return (err.pow(2).mean(dim=-1) * con_mask).sum(dim=-1) / con_mask.sum(dim=-1)
else:
return err.pow(2).flatten(start_dim=start_dim).mean(dim=-1)
def Xentropy(self, pred, tar, con_mask=None):
if con_mask is not None:
return (nn.functional.cross_entropy(pred, tar, reduction='none') * con_mask).sum(dim=-1) / con_mask.sum(dim=-1)
else:
return nn.functional.cross_entropy(pred, tar, reduction='none').mean(dim=-1)
def l2_reg(self, pred, lam = 0.0001):
return lam * torch.norm(pred, p=2, dim=(1, 2, 3)) ** 2
# model forward and prediction
def forward(
self,
x,
nnet,
loss_coeffs,
cond,
con_mask,
nnet_style,
training_step,
cond_ori=None, # not using
con_mask_ori=None, # not using
batch_img_clip=None, # not using
model_config=None,
all_config=None,
text_token=None,
return_raw_loss=False,
additional_embeddings=None,
timesteps: Optional[Tuple[int, int]] = None,
*args,
**kwargs,
):
assert timesteps is None, "timesteps must be None"
timesteps = self.time_step_sampler.sample_time(x)
if nnet_style == 'dimr':
if hasattr(model_config, "standard_diffusion") and model_config.standard_diffusion:
standard_diffusion=True
else:
standard_diffusion=False
return self.p_losses_textVAE(
x, cond, con_mask, timesteps, nnet, batch_img_clip=batch_img_clip, cond_ori=cond_ori, con_mask_ori=con_mask_ori, text_token=text_token, loss_coeffs=loss_coeffs, return_raw_loss=return_raw_loss, nnet_style=nnet_style, standard_diffusion=standard_diffusion, all_config=all_config, training_step=training_step, *args, **kwargs
)
elif nnet_style == 'dit':
if hasattr(model_config, "standard_diffusion") and model_config.standard_diffusion:
standard_diffusion=True
raise NotImplementedError("need update")
else:
standard_diffusion=False
return self.p_losses_textVAE_dit(
x, cond, con_mask, timesteps, nnet, batch_img_clip=batch_img_clip, cond_ori=cond_ori, con_mask_ori=con_mask_ori, text_token=text_token, loss_coeffs=loss_coeffs, return_raw_loss=return_raw_loss, nnet_style=nnet_style, standard_diffusion=standard_diffusion, all_config=all_config, training_step=training_step, *args, **kwargs
)
else:
raise NotImplementedError
def p_losses_textVAE(
self,
x_start,
cond,
con_mask,
t,
nnet,
loss_coeffs,
training_step,
text_token=None,
nnet_style=None,
all_config=None,
batch_img_clip=None,
cond_ori=None, # not using
con_mask_ori=None, # not using
return_raw_loss=False,
additional_embeddings=None,
standard_diffusion=False,
noise=None,
):
"""
CrossFlow training for DiMR
"""
assert noise is None
x0, mu, log_var = nnet(cond, text_encoder = True, shape = x_start.shape, mask = con_mask)
############ loss for Text VE
if batch_img_clip.shape[-1] == 512:
recon_gt = self.resizer(batch_img_clip)
else:
recon_gt = batch_img_clip
recon_gt_clip, logit_scale = nnet(recon_gt, image_clip = True)
image_features = recon_gt_clip / recon_gt_clip.norm(dim=-1, keepdim=True)
text_features = x0 / x0.norm(dim=-1, keepdim=True)
recons_loss = self.clip_loss(image_features, text_features, logit_scale)
# kld_loss = -0.5 * torch.sum(1 + log_var - mu ** 2 - log_var.exp(), dim = 1)
kld_loss = -0.5 * torch.sum(1 + log_var - (0.3 * mu) ** 6 - log_var.exp(), dim = 1) # slightly different KL loss function: mu -> 0 [(0.3*mu) ** 6] and var -> 1
kld_loss_weight = 1e-2 # 0.0005
loss_mlp = recons_loss + kld_loss * kld_loss_weight
############ loss for FM
noise = x0.reshape(x_start.shape)
if hasattr(all_config.nnet.model_args, "cfg_indicator"):
null_indicator = torch.from_numpy(np.array([random.random() < all_config.nnet.model_args.cfg_indicator for _ in range(x_start.shape[0])])).to(x_start.device)
if null_indicator.sum()<=1:
null_indicator[null_indicator==True] = False
assert null_indicator.sum() == 0
pass
else:
target_null = x_start[null_indicator]
target_null = torch.cat((target_null[1:], target_null[:1]))
x_start[null_indicator] = target_null
else:
null_indicator = None
x_noisy = self.psi(t, x=noise, x1=x_start)
target_velocity = self.Dt_psi(t, x=noise, x1=x_start)
log_snr = 4 - t * 8 # compute from timestep : inversed
prediction = nnet(x_noisy, log_snr = log_snr, null_indicator=null_indicator)
target = multi_scale_targets(target_velocity, levels = len(prediction), scale_correction = True)
loss_diff = 0
for pred, coeff in check_zip(prediction, loss_coeffs):
loss_diff = loss_diff + coeff * self.mos(pred - target[pred.shape[-1]])
###########
loss = loss_diff + loss_mlp
return loss, {'loss_diff': loss_diff, 'clip_loss': recons_loss, 'kld_loss': kld_loss, 'kld_loss_weight': torch.tensor(kld_loss_weight, device=kld_loss.device), 'clip_logit_scale': logit_scale}
def p_losses_textVAE_dit(
self,
x_start,
cond,
con_mask,
t,
nnet,
loss_coeffs,
training_step,
text_token=None,
nnet_style=None,
all_config=None,
batch_img_clip=None,
cond_ori=None, # not using
con_mask_ori=None, # not using
return_raw_loss=False,
additional_embeddings=None,
standard_diffusion=False,
noise=None,
):
"""
CrossFLow training for DiT
"""
assert noise is None
x0, mu, log_var = nnet(cond, text_encoder = True, shape = x_start.shape, mask = con_mask)
############ loss for Text VE
if batch_img_clip.shape[-1] == 512:
recon_gt = self.resizer(batch_img_clip)
else:
recon_gt = batch_img_clip
recon_gt_clip, logit_scale = nnet(recon_gt, image_clip = True)
image_features = recon_gt_clip / recon_gt_clip.norm(dim=-1, keepdim=True)
text_features = x0 / x0.norm(dim=-1, keepdim=True)
recons_loss = self.clip_loss(image_features, text_features, logit_scale)
# kld_loss = -0.5 * torch.sum(1 + log_var - mu ** 2 - log_var.exp(), dim = 1)
kld_loss = -0.5 * torch.sum(1 + log_var - (0.3 * mu) ** 6 - log_var.exp(), dim = 1)
kld_loss_weight = 1e-2 # 0.0005
loss_mlp = recons_loss + kld_loss * kld_loss_weight
############ loss for FM
noise = x0.reshape(x_start.shape)
if hasattr(all_config.nnet.model_args, "cfg_indicator"):
null_indicator = torch.from_numpy(np.array([random.random() < all_config.nnet.model_args.cfg_indicator for _ in range(x_start.shape[0])])).to(x_start.device)
if null_indicator.sum()<=1:
null_indicator[null_indicator==True] = False
assert null_indicator.sum() == 0
pass
else:
target_null = x_start[null_indicator]
target_null = torch.cat((target_null[1:], target_null[:1]))
x_start[null_indicator] = target_null
else:
null_indicator = None
x_noisy = self.psi(t, x=noise, x1=x_start)
target_velocity = self.Dt_psi(t, x=noise, x1=x_start)
prediction = nnet(x_noisy, t = t, null_indicator = null_indicator)[0]
loss_diff = self.mos(prediction - target_velocity)
###########
loss = loss_diff + loss_mlp
return loss, {'loss_diff': loss_diff, 'clip_loss': recons_loss, 'kld_loss': kld_loss, 'kld_loss_weight': torch.tensor(kld_loss_weight, device=kld_loss.device), 'clip_logit_scale': logit_scale}
## flow matching specific functions
def psi(self, t, x, x1):
assert (
t.shape[0] == x.shape[0]
), f"Batch size of t and x does not agree {t.shape[0]} vs. {x.shape[0]}"
assert (
t.shape[0] == x1.shape[0]
), f"Batch size of t and x1 does not agree {t.shape[0]} vs. {x1.shape[0]}"
assert t.ndim == 1
t = self.expand_t(t, x)
return (t * (self.sigma_min / self.sigma_max - 1) + 1) * x + t * x1
def Dt_psi(self, t: torch.Tensor, x: torch.Tensor, x1: torch.Tensor):
assert x.shape[0] == x1.shape[0]
return (self.sigma_min / self.sigma_max - 1) * x + x1
def expand_t(self, t: torch.Tensor, x: torch.Tensor) -> torch.Tensor:
t_expanded = t
while t_expanded.ndim < x.ndim:
t_expanded = t_expanded.unsqueeze(-1)
return t_expanded.expand_as(x)
class ODEEulerFlowMatchingSolver(Solver):
"""
ODE Solver for Flow matching that uses an Euler discretization
Supports number of time steps at inference
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.step_size_type = kwargs.get("step_size_type", "step_in_dsigma")
assert self.step_size_type in ["step_in_dsigma", "step_in_dt"]
self.sample_timescale = 1.0 - 1e-5
@torch.no_grad()
def sample_euler(
self,
x_T,
unconditional_guidance_scale,
has_null_indicator,
t=[0, 1.0],
**kwargs,
):
"""
Euler solver for flow matching.
Based on https://github.com/VinAIResearch/LFM/blob/main/sampler/karras_sample.py
"""
t = torch.tensor(t)
t = t * self.sample_timescale
sigma_min = 1e-5
sigma_max = 1.0
sigma_steps = torch.linspace(
sigma_min, sigma_max, self.num_time_steps + 1, device=x_T.device
)
discrete_time_steps_for_step = torch.linspace(
t[0], t[1], self.num_time_steps + 1, device=x_T.device
)
discrete_time_steps_to_eval_model_at = torch.linspace(
t[0], t[1], self.num_time_steps, device=x_T.device
)
print("num_time_steps : " + str(self.num_time_steps))
for i in range(self.num_time_steps):
t_i = discrete_time_steps_to_eval_model_at[i]
velocity = self.get_model_output_dimr(
x_T,
has_null_indicator = has_null_indicator,
t_continuous = t_i.repeat(x_T.shape[0]),
unconditional_guidance_scale = unconditional_guidance_scale,
)
if self.step_size_type == "step_in_dsigma":
step_size = sigma_steps[i + 1] - sigma_steps[i]
elif self.step_size_type == "step_in_dt":
step_size = (
discrete_time_steps_for_step[i + 1]
- discrete_time_steps_for_step[i]
)
x_T = x_T + velocity * step_size
intermediates = None
return x_T, intermediates
@torch.no_grad()
def sample(
self,
*args,
**kwargs,
):
assert kwargs.get("ucg_schedule", None) is None
assert kwargs.get("skip_type", None) is None
assert kwargs.get("dynamic_threshold", None) is None
assert kwargs.get("x0", None) is None
assert kwargs.get("x_T") is not None
assert kwargs.get("score_corrector", None) is None
assert kwargs.get("normals_sequence", None) is None
assert kwargs.get("callback", None) is None
assert kwargs.get("quantize_x0", False) is False
assert kwargs.get("eta", 0.0) == 0.0
assert kwargs.get("mask", None) is None
assert kwargs.get("noise_dropout", 0.0) == 0.0
self.num_time_steps = kwargs.get("sample_steps")
self.x_T_uncon = kwargs.get("x_T_uncon")
samples, intermediates = super().sample(
*args,
sampling_method=self.sample_euler,
do_make_schedule=False,
**kwargs,
)
return samples, intermediates
class ODEFlowMatchingSolver(Solver):
"""
ODE Solver for Flow matching that uses `dopri5`
Does not support number of time steps based control
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.sample_timescale = 1.0 - 1e-5
# sampling for inference
@torch.no_grad()
def sample_transport(
self,
x_T,
unconditional_guidance_scale,
has_null_indicator,
t=[0, 1.0],
ode_opts={},
**kwargs,
):
num_evals = 0
t = torch.tensor(t, device=x_T.device)
if "options" not in ode_opts:
ode_opts["options"] = {}
ode_opts["options"]["step_t"] = [self.sample_timescale + 1e-6]
def ode_func(t, x_T):
nonlocal num_evals
num_evals += 1
model_output = self.get_model_output_dimr(
x_T,
has_null_indicator = has_null_indicator,
t_continuous = t.repeat(x_T.shape[0]),
unconditional_guidance_scale = unconditional_guidance_scale,
)
return model_output
z = torchdiffeq.odeint(
ode_func,
x_T,
t * self.sample_timescale,
**{"atol": 1e-5, "rtol": 1e-5, "method": "dopri5", **ode_opts},
)
# first dimension of z contains solutions to different timepoints
# we only need the last one (corresponding to t=1, i.e., image)
z = z[-1]
intermediates = None
return z, intermediates
@torch.no_grad()
def sample(
self,
*args,
**kwargs,
):
assert kwargs.get("ucg_schedule", None) is None
assert kwargs.get("skip_type", None) is None
assert kwargs.get("dynamic_threshold", None) is None
assert kwargs.get("x0", None) is None
assert kwargs.get("x_T") is not None
assert kwargs.get("score_corrector", None) is None
assert kwargs.get("normals_sequence", None) is None
assert kwargs.get("callback", None) is None
assert kwargs.get("quantize_x0", False) is False
assert kwargs.get("eta", 0.0) == 0.0
assert kwargs.get("mask", None) is None
assert kwargs.get("noise_dropout", 0.0) == 0.0
samples, intermediates = super().sample(
*args,
sampling_method=self.sample_transport,
do_make_schedule=False,
**kwargs,
)
return samples, intermediates |