File size: 9,795 Bytes
f9567e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
from torch.utils.data import Dataset
from torchvision import datasets
import torchvision.transforms as transforms
from scipy.signal import convolve2d
import numpy as np
import torch
import math
import random
from PIL import Image
import os
import glob
import einops
import torchvision.transforms.functional as F
import time
from tqdm import tqdm
import json
import pickle
import io
import cv2
import libs.clip
import bisect
class UnlabeledDataset(Dataset):
def __init__(self, dataset):
self.dataset = dataset
def __len__(self):
return len(self.dataset)
def __getitem__(self, item):
data = tuple(self.dataset[item][:-1]) # remove label
if len(data) == 1:
data = data[0]
return data
class LabeledDataset(Dataset):
def __init__(self, dataset, labels):
self.dataset = dataset
self.labels = labels
def __len__(self):
return len(self.dataset)
def __getitem__(self, item):
return self.dataset[item], self.labels[item]
class DatasetFactory(object):
def __init__(self):
self.train = None
self.test = None
def get_split(self, split, labeled=False):
if split == "train":
dataset = self.train
elif split == "test":
dataset = self.test
else:
raise ValueError
if self.has_label:
return dataset if labeled else UnlabeledDataset(dataset)
else:
assert not labeled
return dataset
def unpreprocess(self, v): # to B C H W and [0, 1]
v = 0.5 * (v + 1.)
v.clamp_(0., 1.)
return v
@property
def has_label(self):
return True
@property
def data_shape(self):
raise NotImplementedError
@property
def data_dim(self):
return int(np.prod(self.data_shape))
@property
def fid_stat(self):
return None
def sample_label(self, n_samples, device):
raise NotImplementedError
def label_prob(self, k):
raise NotImplementedError
def center_crop_arr(pil_image, image_size):
# We are not on a new enough PIL to support the `reducing_gap`
# argument, which uses BOX downsampling at powers of two first.
# Thus, we do it by hand to improve downsample quality.
while min(*pil_image.size) >= 2 * image_size:
pil_image = pil_image.resize(
tuple(x // 2 for x in pil_image.size), resample=Image.BOX
)
scale = image_size / min(*pil_image.size)
pil_image = pil_image.resize(
tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC
)
arr = np.array(pil_image)
crop_y = (arr.shape[0] - image_size) // 2
crop_x = (arr.shape[1] - image_size) // 2
return arr[crop_y : crop_y + image_size, crop_x : crop_x + image_size]
# MS COCO
def center_crop(width, height, img):
resample = {'box': Image.BOX, 'lanczos': Image.LANCZOS}['lanczos']
crop = np.min(img.shape[:2])
img = img[(img.shape[0] - crop) // 2: (img.shape[0] + crop) // 2,
(img.shape[1] - crop) // 2: (img.shape[1] + crop) // 2]
try:
img = Image.fromarray(img, 'RGB')
except:
img = Image.fromarray(img)
img = img.resize((width, height), resample)
return np.array(img).astype(np.uint8)
class MSCOCODatabase(Dataset):
def __init__(self, root, annFile, size=None):
from pycocotools.coco import COCO
self.root = root
self.height = self.width = size
self.coco = COCO(annFile)
self.keys = list(sorted(self.coco.imgs.keys()))
def _load_image(self, key: int):
path = self.coco.loadImgs(key)[0]["file_name"]
return Image.open(os.path.join(self.root, path)).convert("RGB")
def _load_target(self, key: int):
return self.coco.loadAnns(self.coco.getAnnIds(key))
def __len__(self):
return len(self.keys)
def __getitem__(self, index):
key = self.keys[index]
image = self._load_image(key)
image = np.array(image).astype(np.uint8)
image = center_crop(self.width, self.height, image).astype(np.float32)
image = (image / 127.5 - 1.0).astype(np.float32)
image = einops.rearrange(image, 'h w c -> c h w')
anns = self._load_target(key)
target = []
for ann in anns:
target.append(ann['caption'])
return image, target
def get_feature_dir_info(root):
files = glob.glob(os.path.join(root, '*.npy'))
files_caption = glob.glob(os.path.join(root, '*_*.npy'))
num_data = len(files) - len(files_caption)
n_captions = {k: 0 for k in range(num_data)}
for f in files_caption:
name = os.path.split(f)[-1]
k1, k2 = os.path.splitext(name)[0].split('_')
n_captions[int(k1)] += 1
return num_data, n_captions
class MSCOCOFeatureDataset(Dataset):
# the image features are got through sample
def __init__(self, root, need_squeeze=False, full_feature=False, fix_test_order=False):
self.root = root
self.num_data, self.n_captions = get_feature_dir_info(root)
self.need_squeeze = need_squeeze
self.full_feature = full_feature
self.fix_test_order = fix_test_order
def __len__(self):
return self.num_data
def __getitem__(self, index):
if self.full_feature:
z = np.load(os.path.join(self.root, f'{index}.npy'))
if self.fix_test_order:
k = self.n_captions[index] - 1
else:
k = random.randint(0, self.n_captions[index] - 1)
test_item = np.load(os.path.join(self.root, f'{index}_{k}.npy'), allow_pickle=True).item()
token_embedding = test_item['token_embedding']
token_mask = test_item['token_mask']
token = test_item['token']
caption = test_item['promt']
return z, token_embedding, token_mask, token, caption
else:
z = np.load(os.path.join(self.root, f'{index}.npy'))
k = random.randint(0, self.n_captions[index] - 1)
c = np.load(os.path.join(self.root, f'{index}_{k}.npy'))
if self.need_squeeze:
return z, c.squeeze()
else:
return z, c
class JDBFeatureDataset(Dataset):
def __init__(self, root, resolution, llm):
super().__init__()
json_path = os.path.join(root,'img_text_pair.jsonl')
self.img_root = os.path.join(root,'imgs')
self.feature_root = os.path.join(root,'features')
self.resolution = resolution
self.llm = llm
self.file_list = []
with open(json_path, 'r', encoding='utf-8') as file:
for line in file:
self.file_list.append(json.loads(line)['img_path'])
def __len__(self):
return len(self.file_list)
def __getitem__(self, idx):
data_item = self.file_list[idx]
feature_path = os.path.join(self.feature_root, data_item.split('/')[-1].replace('.jpg','.npy'))
img_path = os.path.join(self.img_root, data_item)
train_item = np.load(feature_path, allow_pickle=True).item()
pil_image = Image.open(img_path)
pil_image.load()
pil_image = pil_image.convert("RGB")
z = train_item[f'image_latent_{self.resolution}']
token_embedding = train_item[f'token_embedding_{self.llm}']
token_mask = train_item[f'token_mask_{self.llm}']
token = train_item[f'token_{self.llm}']
caption = train_item['batch_caption']
img = center_crop_arr(pil_image, image_size=self.resolution)
img = (img / 127.5 - 1.0).astype(np.float32)
img = einops.rearrange(img, 'h w c -> c h w')
# return z, token_embedding, token_mask, token, caption, 0, img, 0, 0
return z, token_embedding, token_mask, token, caption, img
class JDBFullFeatures(DatasetFactory): # the moments calculated by Stable Diffusion image encoder & the contexts calculated by clip
def __init__(self, train_path, val_path, resolution, llm, cfg=False, p_uncond=None, fix_test_order=False):
super().__init__()
print('Prepare dataset...')
self.resolution = resolution
self.train = JDBFeatureDataset(train_path, resolution=resolution, llm=llm)
self.test = MSCOCOFeatureDataset(os.path.join(val_path, 'val'), full_feature=True, fix_test_order=fix_test_order)
assert len(self.test) == 40504
print('Prepare dataset ok')
self.empty_context = np.load(os.path.join(val_path, 'empty_context.npy'), allow_pickle=True).item()
assert not cfg
# text embedding extracted by clip
self.prompts, self.token_embedding, self.token_mask, self.token = [], [], [], []
for f in sorted(os.listdir(os.path.join(val_path, 'run_vis')), key=lambda x: int(x.split('.')[0])):
vis_item = np.load(os.path.join(val_path, 'run_vis', f), allow_pickle=True).item()
self.prompts.append(vis_item['promt'])
self.token_embedding.append(vis_item['token_embedding'])
self.token_mask.append(vis_item['token_mask'])
self.token.append(vis_item['token'])
self.token_embedding = np.array(self.token_embedding)
self.token_mask = np.array(self.token_mask)
self.token = np.array(self.token)
@property
def data_shape(self):
if self.resolution==512:
return 4, 64, 64
else:
return 4, 32, 32
@property
def fid_stat(self):
return f'assets/fid_stats/fid_stats_mscoco256_val.npz'
def get_dataset(name, **kwargs):
if name == 'JDB_demo_features':
return JDBFullFeatures(**kwargs)
else:
raise NotImplementedError(name)
|