File size: 9,795 Bytes
f9567e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
from torch.utils.data import Dataset
from torchvision import datasets
import torchvision.transforms as transforms
from scipy.signal import convolve2d
import numpy as np
import torch
import math
import random
from PIL import Image
import os
import glob
import einops
import torchvision.transforms.functional as F
import time
from tqdm import tqdm
import json
import pickle
import io
import cv2

import libs.clip
import bisect


class UnlabeledDataset(Dataset):
    def __init__(self, dataset):
        self.dataset = dataset

    def __len__(self):
        return len(self.dataset)

    def __getitem__(self, item):
        data = tuple(self.dataset[item][:-1])  # remove label
        if len(data) == 1:
            data = data[0]
        return data


class LabeledDataset(Dataset):
    def __init__(self, dataset, labels):
        self.dataset = dataset
        self.labels = labels

    def __len__(self):
        return len(self.dataset)

    def __getitem__(self, item):
        return self.dataset[item], self.labels[item]


class DatasetFactory(object):

    def __init__(self):
        self.train = None
        self.test = None

    def get_split(self, split, labeled=False):
        if split == "train":
            dataset = self.train
        elif split == "test":
            dataset = self.test
        else:
            raise ValueError

        if self.has_label:
            return dataset if labeled else UnlabeledDataset(dataset)
        else:
            assert not labeled
            return dataset

    def unpreprocess(self, v):  # to B C H W and [0, 1]
        v = 0.5 * (v + 1.)
        v.clamp_(0., 1.)
        return v

    @property
    def has_label(self):
        return True

    @property
    def data_shape(self):
        raise NotImplementedError

    @property
    def data_dim(self):
        return int(np.prod(self.data_shape))

    @property
    def fid_stat(self):
        return None

    def sample_label(self, n_samples, device):
        raise NotImplementedError

    def label_prob(self, k):
        raise NotImplementedError


def center_crop_arr(pil_image, image_size):
    # We are not on a new enough PIL to support the `reducing_gap`
    # argument, which uses BOX downsampling at powers of two first.
    # Thus, we do it by hand to improve downsample quality.
    while min(*pil_image.size) >= 2 * image_size:
        pil_image = pil_image.resize(
            tuple(x // 2 for x in pil_image.size), resample=Image.BOX
        )

    scale = image_size / min(*pil_image.size)
    pil_image = pil_image.resize(
        tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC
    )

    arr = np.array(pil_image)
    crop_y = (arr.shape[0] - image_size) // 2
    crop_x = (arr.shape[1] - image_size) // 2
    return arr[crop_y : crop_y + image_size, crop_x : crop_x + image_size]


# MS COCO


def center_crop(width, height, img):
    resample = {'box': Image.BOX, 'lanczos': Image.LANCZOS}['lanczos']
    crop = np.min(img.shape[:2])
    img = img[(img.shape[0] - crop) // 2: (img.shape[0] + crop) // 2,
          (img.shape[1] - crop) // 2: (img.shape[1] + crop) // 2]
    try:
        img = Image.fromarray(img, 'RGB')
    except:
        img = Image.fromarray(img)
    img = img.resize((width, height), resample)

    return np.array(img).astype(np.uint8)


class MSCOCODatabase(Dataset):
    def __init__(self, root, annFile, size=None):
        from pycocotools.coco import COCO
        self.root = root
        self.height = self.width = size

        self.coco = COCO(annFile)
        self.keys = list(sorted(self.coco.imgs.keys()))

    def _load_image(self, key: int):
        path = self.coco.loadImgs(key)[0]["file_name"]
        return Image.open(os.path.join(self.root, path)).convert("RGB")

    def _load_target(self, key: int):
        return self.coco.loadAnns(self.coco.getAnnIds(key))

    def __len__(self):
        return len(self.keys)

    def __getitem__(self, index):
        key = self.keys[index]
        image = self._load_image(key)
        image = np.array(image).astype(np.uint8)
        image = center_crop(self.width, self.height, image).astype(np.float32)
        image = (image / 127.5 - 1.0).astype(np.float32)
        image = einops.rearrange(image, 'h w c -> c h w')

        anns = self._load_target(key)
        target = []
        for ann in anns:
            target.append(ann['caption'])

        return image, target


def get_feature_dir_info(root):
    files = glob.glob(os.path.join(root, '*.npy'))
    files_caption = glob.glob(os.path.join(root, '*_*.npy'))
    num_data = len(files) - len(files_caption)
    n_captions = {k: 0 for k in range(num_data)}
    for f in files_caption:
        name = os.path.split(f)[-1]
        k1, k2 = os.path.splitext(name)[0].split('_')
        n_captions[int(k1)] += 1
    return num_data, n_captions


class MSCOCOFeatureDataset(Dataset):
    # the image features are got through sample
    def __init__(self, root, need_squeeze=False, full_feature=False, fix_test_order=False):
        self.root = root
        self.num_data, self.n_captions = get_feature_dir_info(root)
        self.need_squeeze = need_squeeze
        self.full_feature = full_feature
        self.fix_test_order = fix_test_order

    def __len__(self):
        return self.num_data

    def __getitem__(self, index):
        if self.full_feature:
            z = np.load(os.path.join(self.root, f'{index}.npy'))

            if self.fix_test_order:
                k = self.n_captions[index] - 1
            else:
                k = random.randint(0, self.n_captions[index] - 1)

            test_item = np.load(os.path.join(self.root, f'{index}_{k}.npy'), allow_pickle=True).item()
            token_embedding = test_item['token_embedding']
            token_mask = test_item['token_mask']
            token = test_item['token']
            caption = test_item['promt']
            return z, token_embedding, token_mask, token, caption
        else:
            z = np.load(os.path.join(self.root, f'{index}.npy'))
            k = random.randint(0, self.n_captions[index] - 1)
            c = np.load(os.path.join(self.root, f'{index}_{k}.npy'))
            if self.need_squeeze:
                return z, c.squeeze()
            else:
                return z, c


class JDBFeatureDataset(Dataset):
    def __init__(self, root, resolution, llm):
        super().__init__()
        json_path = os.path.join(root,'img_text_pair.jsonl')
        self.img_root = os.path.join(root,'imgs')
        self.feature_root = os.path.join(root,'features')
        self.resolution = resolution
        self.llm = llm
        self.file_list = []
        with open(json_path, 'r', encoding='utf-8') as file:
            for line in file:
                self.file_list.append(json.loads(line)['img_path'])

    def __len__(self):
        return len(self.file_list)
    
    def __getitem__(self, idx):
        data_item = self.file_list[idx]
        feature_path = os.path.join(self.feature_root, data_item.split('/')[-1].replace('.jpg','.npy'))
        img_path = os.path.join(self.img_root, data_item)

        train_item = np.load(feature_path, allow_pickle=True).item()
        pil_image = Image.open(img_path)
        pil_image.load()
        pil_image = pil_image.convert("RGB")


        z = train_item[f'image_latent_{self.resolution}']
        token_embedding = train_item[f'token_embedding_{self.llm}']
        token_mask = train_item[f'token_mask_{self.llm}']
        token = train_item[f'token_{self.llm}']
        caption = train_item['batch_caption']

        img = center_crop_arr(pil_image, image_size=self.resolution)
        img = (img / 127.5 - 1.0).astype(np.float32)
        img = einops.rearrange(img, 'h w c -> c h w')

        # return z, token_embedding, token_mask, token, caption, 0, img, 0, 0
        return z, token_embedding, token_mask, token, caption, img


class JDBFullFeatures(DatasetFactory):  # the moments calculated by Stable Diffusion image encoder & the contexts calculated by clip
    def __init__(self, train_path, val_path, resolution, llm, cfg=False, p_uncond=None, fix_test_order=False):
        super().__init__()
        print('Prepare dataset...')
        self.resolution = resolution

        self.train = JDBFeatureDataset(train_path, resolution=resolution, llm=llm)
        self.test = MSCOCOFeatureDataset(os.path.join(val_path, 'val'), full_feature=True, fix_test_order=fix_test_order)
        assert len(self.test) == 40504
        
        print('Prepare dataset ok')

        self.empty_context = np.load(os.path.join(val_path, 'empty_context.npy'), allow_pickle=True).item()

        assert not cfg

        # text embedding extracted by clip
        self.prompts, self.token_embedding, self.token_mask, self.token = [], [], [], []
        for f in sorted(os.listdir(os.path.join(val_path, 'run_vis')), key=lambda x: int(x.split('.')[0])):
            vis_item = np.load(os.path.join(val_path, 'run_vis', f), allow_pickle=True).item()
            self.prompts.append(vis_item['promt'])
            self.token_embedding.append(vis_item['token_embedding'])
            self.token_mask.append(vis_item['token_mask'])
            self.token.append(vis_item['token'])
        self.token_embedding = np.array(self.token_embedding)
        self.token_mask = np.array(self.token_mask)
        self.token = np.array(self.token)

    @property
    def data_shape(self):
        if self.resolution==512:
            return 4, 64, 64
        else:
            return 4, 32, 32

    @property
    def fid_stat(self):
        return f'assets/fid_stats/fid_stats_mscoco256_val.npz'


def get_dataset(name, **kwargs):
    if name == 'JDB_demo_features':
        return JDBFullFeatures(**kwargs)
    else:
        raise NotImplementedError(name)