File size: 3,258 Bytes
f9567e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import ml_collections
from dataclasses import dataclass

@dataclass
class Args:
    def __init__(self, **kwargs):
        for key, value in kwargs.items():
            setattr(self, key, value)

model = Args(
    channels = 4,
    block_grad_to_lowres = False,
    norm_type = "TDRMSN",
    use_t2i = True,
    clip_dim=4096,
    num_clip_token=77,
    gradient_checking=True,
    cfg_indicator=0.15,
    textVAE = Args(
        num_blocks = 11,
        hidden_dim = 1024,
        hidden_token_length = 256,
        num_attention_heads = 8,
        dropout_prob = 0.1,
    ),
    stage_configs = [
            Args(
                block_type = "TransformerBlock", 
                dim = 1024,  # channel
                hidden_dim = 2048,
                num_attention_heads = 16,
                num_blocks = 65,  # depth
                max_height = 16,
                max_width = 16,
                image_input_ratio = 1,
                input_feature_ratio = 4,
                final_kernel_size = 3,
                dropout_prob = 0,
            ),
            Args(
                block_type = "ConvNeXtBlock", 
                dim = 512, 
                hidden_dim = 1024, 
                kernel_size = 7, 
                num_blocks = 33,
                max_height = 32,
                max_width = 32,
                image_input_ratio = 1,
                input_feature_ratio = 2,
                final_kernel_size = 3,
                dropout_prob = 0,
            ),
            Args(
                block_type = "ConvNeXtBlock", 
                dim = 256, 
                hidden_dim = 512, 
                kernel_size = 7, 
                num_blocks = 33,
                max_height = 64,
                max_width = 64,
                image_input_ratio = 1,
                input_feature_ratio = 1,
                final_kernel_size = 3,
                dropout_prob = 0,
            ),
    ],
)

def d(**kwargs):
    """Helper of creating a config dict."""
    return ml_collections.ConfigDict(initial_dictionary=kwargs)


def get_config():
    config = ml_collections.ConfigDict()

    config.seed = 1234
    config.z_shape = (4, 64, 64)

    config.autoencoder = d(
        pretrained_path='assets/stable-diffusion/autoencoder_kl.pth',
        scale_factor=0.23010
    )

    config.train = d(
        n_steps=1000000,
        batch_size=1024,
        mode='cond',
        log_interval=10,
        eval_interval=5000,
        save_interval=50000,
    )

    config.optimizer = d(
        name='adamw',
        lr=0.00001,
        weight_decay=0.03,
        betas=(0.9, 0.9),
    )

    config.lr_scheduler = d(
        name='customized',
        warmup_steps=5000
    )

    global model
    config.nnet = d(
        name='dimr',
        model_args=model,
    )
    config.loss_coeffs = [1/4, 1/2, 1]
    
    config.dataset = d(
        name='JDB_demo_features',
        resolution=512,
        llm='t5',
        train_path='/data/qihao/dataset/JDB_demo_feature/',
        val_path='/data/qihao/dataset/coco_val_features/',
        cfg=False
    )

    config.sample = d(
        sample_steps=50,
        n_samples=30000,
        mini_batch_size=10,
        cfg=False,
        scale=7,
        path=''
    )

    return config