Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,54 +1,59 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoProcessor
|
5 |
from PIL import Image
|
6 |
|
7 |
# Model ID
|
8 |
MODEL_ID = "0llheaven/Llama-3.2-11B-Vision-Radiology-mini"
|
9 |
|
10 |
-
# Configure 4-bit quantization
|
11 |
-
quantization_config = BitsAndBytesConfig(
|
12 |
-
load_in_4bit=True,
|
13 |
-
bnb_4bit_compute_dtype=torch.float16,
|
14 |
-
bnb_4bit_quant_type="nf4",
|
15 |
-
bnb_4bit_use_double_quant=True
|
16 |
-
)
|
17 |
-
|
18 |
# Load tokenizer and processor
|
19 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
20 |
processor = AutoProcessor.from_pretrained(MODEL_ID)
|
21 |
|
22 |
-
# Load the model with
|
23 |
-
print("Loading model with
|
24 |
model = AutoModelForCausalLM.from_pretrained(
|
25 |
MODEL_ID,
|
26 |
-
|
27 |
-
device_map="auto",
|
|
|
|
|
|
|
28 |
trust_remote_code=True,
|
29 |
)
|
30 |
print("Model loaded!")
|
31 |
|
32 |
-
|
|
|
|
|
|
|
|
|
33 |
try:
|
34 |
# Process image if provided
|
35 |
if image_file is not None:
|
36 |
image = Image.open(image_file).convert('RGB')
|
37 |
|
38 |
-
# Process inputs
|
39 |
inputs = processor(
|
40 |
text=prompt,
|
41 |
images=image,
|
42 |
return_tensors="pt"
|
43 |
-
)
|
44 |
|
45 |
-
#
|
46 |
-
|
47 |
-
input_ids = inputs.get("input_ids")
|
48 |
-
attention_mask = inputs.get("attention_mask", None)
|
49 |
|
50 |
-
#
|
|
|
|
|
|
|
|
|
51 |
with torch.no_grad():
|
|
|
|
|
|
|
|
|
52 |
outputs = model.generate(
|
53 |
input_ids=input_ids,
|
54 |
attention_mask=attention_mask,
|
@@ -65,8 +70,12 @@ def generate_response(image_file, prompt, max_new_tokens=512, temperature=0.7, t
|
|
65 |
# Text-only input
|
66 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
67 |
|
68 |
-
# Generate response
|
69 |
with torch.no_grad():
|
|
|
|
|
|
|
|
|
70 |
outputs = model.generate(
|
71 |
**inputs,
|
72 |
max_new_tokens=max_new_tokens,
|
@@ -78,7 +87,7 @@ def generate_response(image_file, prompt, max_new_tokens=512, temperature=0.7, t
|
|
78 |
# Decode and return the response
|
79 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
80 |
|
81 |
-
# Remove the input prompt from the response
|
82 |
if response.startswith(prompt):
|
83 |
response = response[len(prompt):].strip()
|
84 |
|
@@ -98,7 +107,7 @@ with gr.Blocks() as demo:
|
|
98 |
prompt_input = gr.Textbox(label="Question or Prompt", placeholder="Describe what you see in this image and identify any abnormalities.")
|
99 |
|
100 |
with gr.Row():
|
101 |
-
max_tokens = gr.Slider(minimum=16, maximum=
|
102 |
temperature = gr.Slider(minimum=0.1, maximum=1.5, value=0.7, step=0.1, label="Temperature")
|
103 |
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-p")
|
104 |
|
@@ -115,10 +124,11 @@ with gr.Blocks() as demo:
|
|
115 |
|
116 |
gr.Examples(
|
117 |
[
|
118 |
-
["sample_xray.jpg", "
|
119 |
-
["sample_ct.jpg", "
|
120 |
],
|
121 |
inputs=[image_input, prompt_input],
|
122 |
)
|
123 |
|
124 |
-
|
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoProcessor
|
5 |
from PIL import Image
|
6 |
|
7 |
# Model ID
|
8 |
MODEL_ID = "0llheaven/Llama-3.2-11B-Vision-Radiology-mini"
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
# Load tokenizer and processor
|
11 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
12 |
processor = AutoProcessor.from_pretrained(MODEL_ID)
|
13 |
|
14 |
+
# Load the model with reduced precision and memory optimizations
|
15 |
+
print("Loading model with memory optimizations...")
|
16 |
model = AutoModelForCausalLM.from_pretrained(
|
17 |
MODEL_ID,
|
18 |
+
torch_dtype=torch.float16, # Use half precision
|
19 |
+
device_map="auto", # Let the library decide how to map the model
|
20 |
+
low_cpu_mem_usage=True, # Optimize CPU memory usage
|
21 |
+
offload_folder="offload", # Offload weights to disk if needed
|
22 |
+
offload_state_dict=True, # Enable state dict offloading
|
23 |
trust_remote_code=True,
|
24 |
)
|
25 |
print("Model loaded!")
|
26 |
|
27 |
+
# Clear CUDA cache after loading
|
28 |
+
if torch.cuda.is_available():
|
29 |
+
torch.cuda.empty_cache()
|
30 |
+
|
31 |
+
def generate_response(image_file, prompt, max_new_tokens=256, temperature=0.7, top_p=0.9):
|
32 |
try:
|
33 |
# Process image if provided
|
34 |
if image_file is not None:
|
35 |
image = Image.open(image_file).convert('RGB')
|
36 |
|
37 |
+
# Process inputs
|
38 |
inputs = processor(
|
39 |
text=prompt,
|
40 |
images=image,
|
41 |
return_tensors="pt"
|
42 |
+
)
|
43 |
|
44 |
+
# Move inputs to the same device as model
|
45 |
+
inputs = {k: v.to(model.device) for k, v in inputs.items() if isinstance(v, torch.Tensor)}
|
|
|
|
|
46 |
|
47 |
+
# For safer generation, extract only what's needed
|
48 |
+
input_ids = inputs.pop("input_ids", None)
|
49 |
+
attention_mask = inputs.pop("attention_mask", None)
|
50 |
+
|
51 |
+
# Generate response with conservative memory settings
|
52 |
with torch.no_grad():
|
53 |
+
# Clear cache before generation
|
54 |
+
if torch.cuda.is_available():
|
55 |
+
torch.cuda.empty_cache()
|
56 |
+
|
57 |
outputs = model.generate(
|
58 |
input_ids=input_ids,
|
59 |
attention_mask=attention_mask,
|
|
|
70 |
# Text-only input
|
71 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
72 |
|
73 |
+
# Generate response with conservative memory settings
|
74 |
with torch.no_grad():
|
75 |
+
# Clear cache before generation
|
76 |
+
if torch.cuda.is_available():
|
77 |
+
torch.cuda.empty_cache()
|
78 |
+
|
79 |
outputs = model.generate(
|
80 |
**inputs,
|
81 |
max_new_tokens=max_new_tokens,
|
|
|
87 |
# Decode and return the response
|
88 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
89 |
|
90 |
+
# Remove the input prompt from the response if present
|
91 |
if response.startswith(prompt):
|
92 |
response = response[len(prompt):].strip()
|
93 |
|
|
|
107 |
prompt_input = gr.Textbox(label="Question or Prompt", placeholder="Describe what you see in this image and identify any abnormalities.")
|
108 |
|
109 |
with gr.Row():
|
110 |
+
max_tokens = gr.Slider(minimum=16, maximum=512, value=256, step=8, label="Max New Tokens")
|
111 |
temperature = gr.Slider(minimum=0.1, maximum=1.5, value=0.7, step=0.1, label="Temperature")
|
112 |
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-p")
|
113 |
|
|
|
124 |
|
125 |
gr.Examples(
|
126 |
[
|
127 |
+
["sample_xray.jpg", "What abnormalities do you see in this X-ray?"],
|
128 |
+
["sample_ct.jpg", "Describe this image and any findings."],
|
129 |
],
|
130 |
inputs=[image_input, prompt_input],
|
131 |
)
|
132 |
|
133 |
+
# Reduce maximum allowed concurrent users to conserve memory
|
134 |
+
demo.launch(max_threads=1)
|