File size: 21,843 Bytes
c077384
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ca8d62
 
c077384
 
 
 
 
 
 
 
f7dedb2
c077384
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7dedb2
c077384
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9dc0abf
c077384
 
 
 
 
 
 
 
 
 
 
d9fd5a2
c077384
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fe6e8a
c077384
8fe6e8a
c077384
 
 
 
8fe6e8a
 
 
 
 
 
 
 
 
 
 
 
 
 
c077384
 
 
 
 
 
 
 
 
 
 
 
 
 
8fe6e8a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
import os
import textwrap
import datetime
import json
import gradio as gr
from openai import OpenAI
import urllib.request
import feedparser
import time
from typing import Dict, List, Optional
import pubmed_parser
import requests

VERBOSE_SHELL = True
ENDPOINT_URL = "https://api.hyperbolic.xyz/v1"
OAI_API_KEY = os.environ['HYPERBOLIC_XYZ_API_KEY']
WEATHER_API_KEY = os.environ["WEATHER_API_KEY"]
MODEL_NAME = "meta-llama/Llama-3.3-70B-Instruct"
#MODEL_NAME = "meta-llama/Meta-Llama-3.1-8B-Instruct"

def lgs(log_string):
    if VERBOSE_SHELL:
        print(log_string)

sampling_params = {
    "temperature": 0.8,
    "top_p": 0.95,
    "max_tokens": 2048,
    "stop_token_ids": [128001,128008,128009,128006],
}

EOT_STRING = "<|eot_id|>"
FUNCTION_EOT_STRING = "<|eom_id|>"
ROLE_HEADER = "<|start_header_id|>{role}<|end_header_id|>"

todays_date_string = datetime.date.today().strftime("%d %B %Y")

def system_prompt_format(function_descriptions,function_jsons):
    return """Cutting Knowledge Date: December 2023
Today Date: """ + todays_date_string + """

You are a helpful assistant with tool calling capabilities.

""" + "\n".join(function_descriptions) + """
If you choose to use one of the following functions, respond with a JSON for a function call with its proper arguments that best answers the given prompt.

Your tool request should be in the exact format {"name": function name, "parameters": dictionary of argument name and its value}. Do not use variables. Just a two-key dictionary, starting with the function name, followed by a dictionary of parameters.

""" + "\n".join([json.dumps(d,indent=2) for d in function_jsons]) + """

After receiving the results back from a function (formatted as {"name": function name, "return": returned data after running function}) formulate your response to the user. If the information needed is not found in the returned data, either attempt a new function call, or inform the user that you cannot answer based on your available knowledge. The user cannot see the function results. You have to interpret the data and provide a response based on it.

If the user request does not necessitate a function call, simply respond to the user's query directly."""


def build_sys_prompt(tool_objects):
    function_descriptions = [t.system_prompt_paragraph for t in tool_objects]
    function_jsons = [t.json_definition_of_function for t in tool_objects]
    return system_prompt_format(function_descriptions,function_jsons)

class ToolBase:
    def __init__(self,
            programmatic_name: str,
            natural_name: str,
            active_voice_description_of_capability: str,
            passive_voice_description_of_function: str,
            prescriptive_conditional: str,
            input_params: Dict[str, Dict],
            required_params: Optional[List[str]] = None,
        ):
        self.json_name = programmatic_name
        self.json_description = passive_voice_description_of_function
        self.json_definition_of_function = {
            "type": "function",
                "function": {
                    "name": self.json_name,
                    "description": self.json_description,
                    "parameters": {
                        "type": "object",
                        "properties": input_params,
                        "required": required_params,
                    }
                }
            }
        self.system_prompt_paragraph = active_voice_description_of_capability + " " + prescriptive_conditional
    def actual_function(self, **kwargs):
        raise NotImplementedError("Subclasses must implement this method.")

def search_arxiv_papers(
        query: str,
        max_results: int = 5,
        sort_by: str = 'relevance'
    ) -> Dict:
    """
    Search for papers on arXiv using their API.

    Args:
        query: Search query string
        max_results: Maximum number of results to return (default: 5)
        sort_by: Sorting criteria (default: 'relevance')

    Returns:
        Dictionary containing search results and metadata
    """
    try:
        # Construct the search query
        search_query = f'all:{query}'

        # Construct the API URL
        base_url = 'https://export.arxiv.org/api/query?'
        params = {
            'search_query': search_query,
            'start': 0,
            'max_results': max_results,
            'sortBy': sort_by,
            'sortOrder': 'descending'
        }
        query_string = '&'.join([f'{k}={urllib.parse.quote(str(v))}' for k, v in params.items()])
        url = base_url + query_string

        # Make the API request
        response = urllib.request.urlopen(url)
        feed = feedparser.parse(response.read().decode('utf-8'))

        # Process the results
        papers = []
        for entry in feed.entries:
            paper = {
                'id': entry.id.split('/abs/')[-1],
                'title': entry.title,
                'authors': [author.name for author in entry.authors],
                'summary': entry.summary,
                'published': entry.published,
                'link': entry.link,
                'primary_category': entry.tags[0]['term']
            }
            papers.append(paper)

        time.sleep(1)

        return {
            'status': 'success',
            'total_results': len(papers),
            'papers': papers
        }

    except Exception as e:
        return {
            'status': 'error',
            'message': str(e)
        }

class ArxivSearchTool(ToolBase):
    def __init__(self):
        super().__init__(
            programmatic_name="search_arxiv_papers",
            natural_name="arXiv Paper Search",
            active_voice_description_of_capability="You can search for academic papers on arXiv.",
            passive_voice_description_of_function="a service that searches and retrieves academic papers from arXiv based on various criteria",
            prescriptive_conditional="When given a research topic or paper query, you should call the search_arxiv_papers function to find relevant papers.",
            input_params={
                "query": {
                    "type": "string",
                    "description": "Search query (e.g., 'deep learning', 'quantum computing')"
                },
                "max_results": {
                    "type": "integer",
                    "description": "Maximum number of results to return (default: 5)",
                    "optional": True
                },
                "sort_by": {
                    "type": "string",
                    "description": "Sort criteria (e.g., 'relevance', 'lastUpdatedDate', 'submittedDate')",
                    "optional": True
                }
            },
            required_params=["query"],
        )

    def actual_function(self, **kwargs):
        """
        Search for papers on arXiv using their API.

        Args:
            query: Search query string
            max_results: Maximum number of results to return (default: 5)
            sort_by: Sorting criteria (default: 'relevance')

        Returns:
            Dictionary containing search results and metadata
        """
        return search_arxiv_papers(**kwargs)

arxiv_tool = ArxivSearchTool()

def get_snp_info(rsid):
    base_url = "https://api.ncbi.nlm.nih.gov/variation/v0/"
    result = {"rsid": rsid, "error": "No data found"}

    # Fetch RefSNP data
    snp_url = f"{base_url}refsnp/{rsid}"
    response = requests.get(snp_url)

    if response.status_code != 200:
        return {"error": f"Failed to retrieve data for rs{rsid}"}

    data = response.json()

    # Extract useful information
    result = {
        "create_date": data.get("create_date", "Unknown"),
        "last_update_date": data.get("last_update_date", "Unknown"),
        "genes": [],
        "hgvs": [],
        "spdi": [],
        "clinical_significance": [],
        "frequency_data": {},
    }

    # Extract gene associations
    primary_data = data.get("primary_snapshot_data", {})
    if "allele_annotations" in primary_data:
        for annotation in primary_data["allele_annotations"]:
            for gene in annotation.get("assembly_annotation", []):
                for gene_info in gene.get("genes", []):
                    result["genes"].append(gene_info.get("locus", "Unknown"))

    # Extract HGVS notation
    for placement in primary_data.get("placements_with_allele", []):
        for allele in placement.get("alleles", []):
            if "hgvs" in allele:
                result["hgvs"].append(allele["hgvs"])
            if "spdi" in allele.get("allele", {}):
                spdi_data = allele["allele"]["spdi"]
                spdi_notation = f"{spdi_data['seq_id']}:{spdi_data['position']}:{spdi_data['deleted_sequence']}:{spdi_data['inserted_sequence']}"
                result["spdi"].append(spdi_notation)

    # Extract clinical significance from ClinVar
    for annotation in primary_data.get("allele_annotations", []):
        for clinical in annotation.get("clinical", []):
            result["clinical_significance"].extend([str(s)[:600] for s in clinical.get("clinical_significances", [])])

    # Fetch ALFA frequency data
    freq_url = f"{base_url}refsnp/{rsid}/frequency"
    freq_response = requests.get(freq_url)

    if freq_response.status_code == 200:
        freq_data = freq_response.json().get("results", {})
        for key, value in freq_data.items():
            if "counts" in value:
                result["frequency_data"] = value["counts"]
                break
    citations = data.get("citations", [])[:6]
    lgs("citations: " + str(citations))
    result["citations"] = [pubmed_parser.parse_xml_web(c, sleep=0.5, save_xml=False,) for c in citations]
    lgs("full citations data: " + str(result["citations"]))
    return result

class NIHRefSNPTool(ToolBase):
    def __init__(self):
        super().__init__(
            programmatic_name="search_nih_refsnp",
            natural_name="NIH RefSNP Searcher",
            active_voice_description_of_capability=(
                "You can search for refSNP data on the NIH Variation API."
            ),
            passive_voice_description_of_function=(
                "a service that retrieves refSNP data from the NIH Variation API "
                "based on a provided SNP identifier"
            ),
            prescriptive_conditional=(
                "When given a refSNP identifier (e.g., 'rs79220014'), "
                "you should call the search_nih_refsnp function "
                "to find its associated data."
            ),
            input_params={
                "snp": {
                    "type": "string",
                    "description": "The refSNP identifier (e.g., 'rs79220014')"
                }
            },
            required_params=["snp"],
        )

    def actual_function(self, **kwargs):
        return get_snp_info(kwargs["snp"][2:])

nih_ref_snp_tool=NIHRefSNPTool()

def get_weather_data(location):
    """
    Fetch current weather data for a given location using WeatherAPI.com.

    Args:
        location (str): The location for which to retrieve weather (e.g., "London", "90210", or "48.8567,2.3510").

    Returns:
        dict: A dictionary containing the current weather data or an error message.
    """
    base_url = "https://api.weatherapi.com/v1/current.json"
    params = {
        "key": WEATHER_API_KEY,
        "q": location,
        "aqi": "no"  # Set to "yes" to include air quality data if desired.
    }
    full_url = base_url + "?" + "&".join([f"{k}={urllib.parse.quote(str(v))}" for k, v in params.items()])
    try:
        response = requests.get(full_url)
    except:
        lgs("FAILED PARAMS: " + str(params))
        lgs("FAILED RESPONSE: " + str(response.text))
    lgs("RAW RESPONSE: " + str(response))
    if response.status_code != 200:
        return {"error": f"Failed to retrieve weather data for {location}. Status code: {response.status_code}"}
    data = response.json()
    formatted_data = {
        "location": data.get("location", {}),
        "current": {
            "last_updated": data.get("current", {}).get("last_updated"),
            "temp_c": data.get("current", {}).get("temp_c"),
            "temp_f": data.get("current", {}).get("temp_f"),
            "precip_mm": data.get("current", {}).get("precip_mm"),
            "precip_in": data.get("current", {}).get("precip_in"),
            "humidity": data.get("current", {}).get("humidity"),
            "wind_kph": data.get("current", {}).get("wind_kph"),
            "wind_mph": data.get("current", {}).get("wind_mph"),
            "condition": data.get("current", {}).get("condition", {})
        }
    }
    return formatted_data

class WeatherAPITool(ToolBase):
    def __init__(self):
        super().__init__(
            programmatic_name="get_weather_data",
            natural_name="Weather Report Fetcher",
            active_voice_description_of_capability="You can fetch real-time weather data for any location worldwide.",
            passive_voice_description_of_function="a service that retrieves current weather details including temperature, precipitation, humidity, and wind data.",
            prescriptive_conditional="When provided with a location (city, ZIP, or lat,long) call the get_weather_data function to retrieve its weather information.",
            input_params={
                "location": {
                    "type": "string",
                    "description": "The location to retrieve weather data for (e.g., 'London', '90210', or '48.8567,2.3510')."
                },
            },
            required_params=["location"],
        )

    def actual_function(self, **kwargs):
        return get_weather_data(kwargs["location"])

# Instance of the weather tool.
weather_tool = WeatherAPITool()

tool_objects_list = [arxiv_tool, nih_ref_snp_tool,weather_tool]
system_prompt = build_sys_prompt(tool_objects_list)
functions_dict = {t.json_name: t.actual_function for t in tool_objects_list}

print(system_prompt)

class LLM:
    def __init__(self, max_model_len: int = 4096):
        self.api_key = OAI_API_KEY
        self.max_model_len = max_model_len
        self.client = OpenAI(base_url=ENDPOINT_URL, api_key=self.api_key)
        #models_list = self.client.models.list()
        #self.model_name = models_list.data[0].id
        self.model_name = MODEL_NAME

    def generate(self, prompt: str, sampling_params: dict) -> dict:
        completion_params = {
            "model": self.model_name,
            "prompt": prompt,
            "max_tokens": sampling_params.get("max_tokens", 2048),
            "temperature": sampling_params.get("temperature", 0.8),
            "top_p": sampling_params.get("top_p", 0.95),
            "n": sampling_params.get("n", 1),
            "stream": False,
        }

        if "stop" in sampling_params:
            completion_params["stop"] = sampling_params["stop"]
        if "presence_penalty" in sampling_params:
            completion_params["presence_penalty"] = sampling_params["presence_penalty"]
        if "frequency_penalty" in sampling_params:
            completion_params["frequency_penalty"] = sampling_params["frequency_penalty"]

        return self.client.completions.create(**completion_params)

def form_chat_prompt(message_history, functions=functions_dict.keys()):
    """Builds the chat prompt for the LLM."""

    full_prompt = (
        ROLE_HEADER.format(role="system")
        + "\n\n"
        + system_prompt
        + EOT_STRING
    )
    for message in message_history:
        full_prompt += (
            ROLE_HEADER.format(role=message["role"])
            + "\n\n"
            + message["content"]
            + EOT_STRING
        )
    full_prompt += ROLE_HEADER.format(role="assistant")
    return full_prompt

def check_assistant_response_for_tool_calls(response):
    """Check if the LLM response contains a function call."""
    response = response.split(FUNCTION_EOT_STRING)[0].split(EOT_STRING)[0]
    for tool_name in functions_dict.keys():
        if f"\"{tool_name}\"" in response and "{" in response:
            response = "{" + "{".join(response.split("{")[1:])
            for _ in range(10):
                response = "}".join(response.split("}")[:-1]) + "}"
                try:
                    return json.loads(response)
                except json.JSONDecodeError:
                    continue
    return None

def process_tool_request(tool_request_data):
    """Process tool requests from the LLM."""
    tool_name = tool_request_data["name"]
    tool_parameters = tool_request_data["parameters"]
    tool_return = None
    if tool_name == arxiv_tool.json_name:
        query = tool_parameters["query"]
        max_results = tool_parameters.get("max_results", 5)
        sort_by = tool_parameters.get("sort_by", "relevance")
        search_results = arxiv_tool.actual_function(query=query, max_results=max_results, sort_by=sort_by)
        tool_return = {"name": arxiv_tool.json_name, "return": search_results}
    elif tool_name == nih_ref_snp_tool.json_name:
        snp = tool_parameters["snp"]
        search_results = nih_ref_snp_tool.actual_function(snp=snp)
        tool_return = {"name": nih_ref_snp_tool.json_name, "return": search_results}
    elif tool_name == weather_tool.json_name:
        location = tool_parameters["location"]
        search_results = weather_tool.actual_function(location=location)
        tool_return = {"name": weather_tool.json_name, "return": search_results}
    else:
        raise ValueError(f"Unknown tool name: {tool_name}")
    lgs("TOOL: " + str(tool_return))
    return tool_return

def restore_message_history(full_history):
    """Restore the complete message history including tool interactions."""
    restored = []
    for message in full_history:
        if message["role"] == "assistant" and "metadata" in message:
            tool_interactions = message["metadata"].get("tool_interactions", [])
            if tool_interactions:
                for tool_msg in tool_interactions:
                    restored.append(tool_msg)
                final_msg = message.copy()
                del final_msg["metadata"]["tool_interactions"]
                restored.append(final_msg)
            else:
                restored.append(message)
        else:
            restored.append(message)
    return restored

def iterate_chat(llm, sampling_params, full_history):
    """Handle conversation turns with tool calling."""
    tool_interactions = []

    for _ in range(10):
        prompt = form_chat_prompt(restore_message_history(full_history) + tool_interactions)
        output = llm.generate(prompt, sampling_params)

        if VERBOSE_SHELL:
            print(f"Input prompt: {prompt}")
            print("-" * 50)
            print(f"Model response: {output.choices[0].text}")
            print("=" * 50)
        if not output or not output.choices:
            raise ValueError("Invalid completion response")

        assistant_response = output.choices[0].text.strip()
        lgs("ASSISTANT: " + assistant_response.replace("\n", "\\n"))
        assistant_response = assistant_response.split(FUNCTION_EOT_STRING)[0].split(EOT_STRING)[0]

        tool_request_data = check_assistant_response_for_tool_calls(assistant_response)
        if not tool_request_data:
            final_message = {
                "role": "assistant",
                "content": assistant_response,
                "metadata": {
                    "tool_interactions": tool_interactions
                }
            }
            full_history.append(final_message)
            return full_history
        else:
            assistant_message = {
                "role": "assistant",
                "content": json.dumps(tool_request_data),
            }
            tool_interactions.append(assistant_message)
            tool_return_data = process_tool_request(tool_request_data)

            tool_message = {
                "role": "function",
                "content": json.dumps(tool_return_data)
            }
            tool_interactions.append(tool_message)

    return full_history

def user_conversation(user_message, chat_history, full_history):
    """Handle user input and maintain conversation state."""
    if full_history is None:
        full_history = []
    lgs("USER: " + user_message.replace("\n", "\\n"))
    full_history.append({"role": "user", "content": user_message})
    updated_history = iterate_chat(llm, sampling_params, full_history)
    assistant_answer = updated_history[-1]["content"]
    chat_history.append((user_message, assistant_answer))

    return "", chat_history, updated_history

llm = LLM(max_model_len=32000)

lgs("STARTING NEW CHAT")
with gr.Blocks() as demo:
    gr.Markdown(f"<h2>Weather/Arxiv/SNP Multi-tool Calling Bot</h2>")
    chat_state = gr.State([])
    chatbot = gr.Chatbot(label="Chat with the multi-tool bot")
    user_input = gr.Textbox(
        lines=1,
        placeholder="Type your message here...",
    )
    gr.Examples([
            [
                "What is the current weather in Åfjord?",
            ],
            [
                "List some papers about humor in LLMs",
            ],
            [
                "What does this SNP do?: rs429358",
            ]
        ],
        inputs=[user_input],
        label="Examples",
    )
    user_input.submit(
        fn=user_conversation,
        inputs=[user_input, chatbot, chat_state],
        outputs=[user_input, chatbot, chat_state],
        queue=False
    )

    send_button = gr.Button("Send")
    send_button.click(
        fn=user_conversation,
        inputs=[user_input, chatbot, chat_state],
        outputs=[user_input, chatbot, chat_state],
        queue=False
    )
    demo.launch()
    share_url = demo.share_url