Spaces:
Running
Running
File size: 21,843 Bytes
c077384 6ca8d62 c077384 f7dedb2 c077384 f7dedb2 c077384 9dc0abf c077384 d9fd5a2 c077384 8fe6e8a c077384 8fe6e8a c077384 8fe6e8a c077384 8fe6e8a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 |
import os
import textwrap
import datetime
import json
import gradio as gr
from openai import OpenAI
import urllib.request
import feedparser
import time
from typing import Dict, List, Optional
import pubmed_parser
import requests
VERBOSE_SHELL = True
ENDPOINT_URL = "https://api.hyperbolic.xyz/v1"
OAI_API_KEY = os.environ['HYPERBOLIC_XYZ_API_KEY']
WEATHER_API_KEY = os.environ["WEATHER_API_KEY"]
MODEL_NAME = "meta-llama/Llama-3.3-70B-Instruct"
#MODEL_NAME = "meta-llama/Meta-Llama-3.1-8B-Instruct"
def lgs(log_string):
if VERBOSE_SHELL:
print(log_string)
sampling_params = {
"temperature": 0.8,
"top_p": 0.95,
"max_tokens": 2048,
"stop_token_ids": [128001,128008,128009,128006],
}
EOT_STRING = "<|eot_id|>"
FUNCTION_EOT_STRING = "<|eom_id|>"
ROLE_HEADER = "<|start_header_id|>{role}<|end_header_id|>"
todays_date_string = datetime.date.today().strftime("%d %B %Y")
def system_prompt_format(function_descriptions,function_jsons):
return """Cutting Knowledge Date: December 2023
Today Date: """ + todays_date_string + """
You are a helpful assistant with tool calling capabilities.
""" + "\n".join(function_descriptions) + """
If you choose to use one of the following functions, respond with a JSON for a function call with its proper arguments that best answers the given prompt.
Your tool request should be in the exact format {"name": function name, "parameters": dictionary of argument name and its value}. Do not use variables. Just a two-key dictionary, starting with the function name, followed by a dictionary of parameters.
""" + "\n".join([json.dumps(d,indent=2) for d in function_jsons]) + """
After receiving the results back from a function (formatted as {"name": function name, "return": returned data after running function}) formulate your response to the user. If the information needed is not found in the returned data, either attempt a new function call, or inform the user that you cannot answer based on your available knowledge. The user cannot see the function results. You have to interpret the data and provide a response based on it.
If the user request does not necessitate a function call, simply respond to the user's query directly."""
def build_sys_prompt(tool_objects):
function_descriptions = [t.system_prompt_paragraph for t in tool_objects]
function_jsons = [t.json_definition_of_function for t in tool_objects]
return system_prompt_format(function_descriptions,function_jsons)
class ToolBase:
def __init__(self,
programmatic_name: str,
natural_name: str,
active_voice_description_of_capability: str,
passive_voice_description_of_function: str,
prescriptive_conditional: str,
input_params: Dict[str, Dict],
required_params: Optional[List[str]] = None,
):
self.json_name = programmatic_name
self.json_description = passive_voice_description_of_function
self.json_definition_of_function = {
"type": "function",
"function": {
"name": self.json_name,
"description": self.json_description,
"parameters": {
"type": "object",
"properties": input_params,
"required": required_params,
}
}
}
self.system_prompt_paragraph = active_voice_description_of_capability + " " + prescriptive_conditional
def actual_function(self, **kwargs):
raise NotImplementedError("Subclasses must implement this method.")
def search_arxiv_papers(
query: str,
max_results: int = 5,
sort_by: str = 'relevance'
) -> Dict:
"""
Search for papers on arXiv using their API.
Args:
query: Search query string
max_results: Maximum number of results to return (default: 5)
sort_by: Sorting criteria (default: 'relevance')
Returns:
Dictionary containing search results and metadata
"""
try:
# Construct the search query
search_query = f'all:{query}'
# Construct the API URL
base_url = 'https://export.arxiv.org/api/query?'
params = {
'search_query': search_query,
'start': 0,
'max_results': max_results,
'sortBy': sort_by,
'sortOrder': 'descending'
}
query_string = '&'.join([f'{k}={urllib.parse.quote(str(v))}' for k, v in params.items()])
url = base_url + query_string
# Make the API request
response = urllib.request.urlopen(url)
feed = feedparser.parse(response.read().decode('utf-8'))
# Process the results
papers = []
for entry in feed.entries:
paper = {
'id': entry.id.split('/abs/')[-1],
'title': entry.title,
'authors': [author.name for author in entry.authors],
'summary': entry.summary,
'published': entry.published,
'link': entry.link,
'primary_category': entry.tags[0]['term']
}
papers.append(paper)
time.sleep(1)
return {
'status': 'success',
'total_results': len(papers),
'papers': papers
}
except Exception as e:
return {
'status': 'error',
'message': str(e)
}
class ArxivSearchTool(ToolBase):
def __init__(self):
super().__init__(
programmatic_name="search_arxiv_papers",
natural_name="arXiv Paper Search",
active_voice_description_of_capability="You can search for academic papers on arXiv.",
passive_voice_description_of_function="a service that searches and retrieves academic papers from arXiv based on various criteria",
prescriptive_conditional="When given a research topic or paper query, you should call the search_arxiv_papers function to find relevant papers.",
input_params={
"query": {
"type": "string",
"description": "Search query (e.g., 'deep learning', 'quantum computing')"
},
"max_results": {
"type": "integer",
"description": "Maximum number of results to return (default: 5)",
"optional": True
},
"sort_by": {
"type": "string",
"description": "Sort criteria (e.g., 'relevance', 'lastUpdatedDate', 'submittedDate')",
"optional": True
}
},
required_params=["query"],
)
def actual_function(self, **kwargs):
"""
Search for papers on arXiv using their API.
Args:
query: Search query string
max_results: Maximum number of results to return (default: 5)
sort_by: Sorting criteria (default: 'relevance')
Returns:
Dictionary containing search results and metadata
"""
return search_arxiv_papers(**kwargs)
arxiv_tool = ArxivSearchTool()
def get_snp_info(rsid):
base_url = "https://api.ncbi.nlm.nih.gov/variation/v0/"
result = {"rsid": rsid, "error": "No data found"}
# Fetch RefSNP data
snp_url = f"{base_url}refsnp/{rsid}"
response = requests.get(snp_url)
if response.status_code != 200:
return {"error": f"Failed to retrieve data for rs{rsid}"}
data = response.json()
# Extract useful information
result = {
"create_date": data.get("create_date", "Unknown"),
"last_update_date": data.get("last_update_date", "Unknown"),
"genes": [],
"hgvs": [],
"spdi": [],
"clinical_significance": [],
"frequency_data": {},
}
# Extract gene associations
primary_data = data.get("primary_snapshot_data", {})
if "allele_annotations" in primary_data:
for annotation in primary_data["allele_annotations"]:
for gene in annotation.get("assembly_annotation", []):
for gene_info in gene.get("genes", []):
result["genes"].append(gene_info.get("locus", "Unknown"))
# Extract HGVS notation
for placement in primary_data.get("placements_with_allele", []):
for allele in placement.get("alleles", []):
if "hgvs" in allele:
result["hgvs"].append(allele["hgvs"])
if "spdi" in allele.get("allele", {}):
spdi_data = allele["allele"]["spdi"]
spdi_notation = f"{spdi_data['seq_id']}:{spdi_data['position']}:{spdi_data['deleted_sequence']}:{spdi_data['inserted_sequence']}"
result["spdi"].append(spdi_notation)
# Extract clinical significance from ClinVar
for annotation in primary_data.get("allele_annotations", []):
for clinical in annotation.get("clinical", []):
result["clinical_significance"].extend([str(s)[:600] for s in clinical.get("clinical_significances", [])])
# Fetch ALFA frequency data
freq_url = f"{base_url}refsnp/{rsid}/frequency"
freq_response = requests.get(freq_url)
if freq_response.status_code == 200:
freq_data = freq_response.json().get("results", {})
for key, value in freq_data.items():
if "counts" in value:
result["frequency_data"] = value["counts"]
break
citations = data.get("citations", [])[:6]
lgs("citations: " + str(citations))
result["citations"] = [pubmed_parser.parse_xml_web(c, sleep=0.5, save_xml=False,) for c in citations]
lgs("full citations data: " + str(result["citations"]))
return result
class NIHRefSNPTool(ToolBase):
def __init__(self):
super().__init__(
programmatic_name="search_nih_refsnp",
natural_name="NIH RefSNP Searcher",
active_voice_description_of_capability=(
"You can search for refSNP data on the NIH Variation API."
),
passive_voice_description_of_function=(
"a service that retrieves refSNP data from the NIH Variation API "
"based on a provided SNP identifier"
),
prescriptive_conditional=(
"When given a refSNP identifier (e.g., 'rs79220014'), "
"you should call the search_nih_refsnp function "
"to find its associated data."
),
input_params={
"snp": {
"type": "string",
"description": "The refSNP identifier (e.g., 'rs79220014')"
}
},
required_params=["snp"],
)
def actual_function(self, **kwargs):
return get_snp_info(kwargs["snp"][2:])
nih_ref_snp_tool=NIHRefSNPTool()
def get_weather_data(location):
"""
Fetch current weather data for a given location using WeatherAPI.com.
Args:
location (str): The location for which to retrieve weather (e.g., "London", "90210", or "48.8567,2.3510").
Returns:
dict: A dictionary containing the current weather data or an error message.
"""
base_url = "https://api.weatherapi.com/v1/current.json"
params = {
"key": WEATHER_API_KEY,
"q": location,
"aqi": "no" # Set to "yes" to include air quality data if desired.
}
full_url = base_url + "?" + "&".join([f"{k}={urllib.parse.quote(str(v))}" for k, v in params.items()])
try:
response = requests.get(full_url)
except:
lgs("FAILED PARAMS: " + str(params))
lgs("FAILED RESPONSE: " + str(response.text))
lgs("RAW RESPONSE: " + str(response))
if response.status_code != 200:
return {"error": f"Failed to retrieve weather data for {location}. Status code: {response.status_code}"}
data = response.json()
formatted_data = {
"location": data.get("location", {}),
"current": {
"last_updated": data.get("current", {}).get("last_updated"),
"temp_c": data.get("current", {}).get("temp_c"),
"temp_f": data.get("current", {}).get("temp_f"),
"precip_mm": data.get("current", {}).get("precip_mm"),
"precip_in": data.get("current", {}).get("precip_in"),
"humidity": data.get("current", {}).get("humidity"),
"wind_kph": data.get("current", {}).get("wind_kph"),
"wind_mph": data.get("current", {}).get("wind_mph"),
"condition": data.get("current", {}).get("condition", {})
}
}
return formatted_data
class WeatherAPITool(ToolBase):
def __init__(self):
super().__init__(
programmatic_name="get_weather_data",
natural_name="Weather Report Fetcher",
active_voice_description_of_capability="You can fetch real-time weather data for any location worldwide.",
passive_voice_description_of_function="a service that retrieves current weather details including temperature, precipitation, humidity, and wind data.",
prescriptive_conditional="When provided with a location (city, ZIP, or lat,long) call the get_weather_data function to retrieve its weather information.",
input_params={
"location": {
"type": "string",
"description": "The location to retrieve weather data for (e.g., 'London', '90210', or '48.8567,2.3510')."
},
},
required_params=["location"],
)
def actual_function(self, **kwargs):
return get_weather_data(kwargs["location"])
# Instance of the weather tool.
weather_tool = WeatherAPITool()
tool_objects_list = [arxiv_tool, nih_ref_snp_tool,weather_tool]
system_prompt = build_sys_prompt(tool_objects_list)
functions_dict = {t.json_name: t.actual_function for t in tool_objects_list}
print(system_prompt)
class LLM:
def __init__(self, max_model_len: int = 4096):
self.api_key = OAI_API_KEY
self.max_model_len = max_model_len
self.client = OpenAI(base_url=ENDPOINT_URL, api_key=self.api_key)
#models_list = self.client.models.list()
#self.model_name = models_list.data[0].id
self.model_name = MODEL_NAME
def generate(self, prompt: str, sampling_params: dict) -> dict:
completion_params = {
"model": self.model_name,
"prompt": prompt,
"max_tokens": sampling_params.get("max_tokens", 2048),
"temperature": sampling_params.get("temperature", 0.8),
"top_p": sampling_params.get("top_p", 0.95),
"n": sampling_params.get("n", 1),
"stream": False,
}
if "stop" in sampling_params:
completion_params["stop"] = sampling_params["stop"]
if "presence_penalty" in sampling_params:
completion_params["presence_penalty"] = sampling_params["presence_penalty"]
if "frequency_penalty" in sampling_params:
completion_params["frequency_penalty"] = sampling_params["frequency_penalty"]
return self.client.completions.create(**completion_params)
def form_chat_prompt(message_history, functions=functions_dict.keys()):
"""Builds the chat prompt for the LLM."""
full_prompt = (
ROLE_HEADER.format(role="system")
+ "\n\n"
+ system_prompt
+ EOT_STRING
)
for message in message_history:
full_prompt += (
ROLE_HEADER.format(role=message["role"])
+ "\n\n"
+ message["content"]
+ EOT_STRING
)
full_prompt += ROLE_HEADER.format(role="assistant")
return full_prompt
def check_assistant_response_for_tool_calls(response):
"""Check if the LLM response contains a function call."""
response = response.split(FUNCTION_EOT_STRING)[0].split(EOT_STRING)[0]
for tool_name in functions_dict.keys():
if f"\"{tool_name}\"" in response and "{" in response:
response = "{" + "{".join(response.split("{")[1:])
for _ in range(10):
response = "}".join(response.split("}")[:-1]) + "}"
try:
return json.loads(response)
except json.JSONDecodeError:
continue
return None
def process_tool_request(tool_request_data):
"""Process tool requests from the LLM."""
tool_name = tool_request_data["name"]
tool_parameters = tool_request_data["parameters"]
tool_return = None
if tool_name == arxiv_tool.json_name:
query = tool_parameters["query"]
max_results = tool_parameters.get("max_results", 5)
sort_by = tool_parameters.get("sort_by", "relevance")
search_results = arxiv_tool.actual_function(query=query, max_results=max_results, sort_by=sort_by)
tool_return = {"name": arxiv_tool.json_name, "return": search_results}
elif tool_name == nih_ref_snp_tool.json_name:
snp = tool_parameters["snp"]
search_results = nih_ref_snp_tool.actual_function(snp=snp)
tool_return = {"name": nih_ref_snp_tool.json_name, "return": search_results}
elif tool_name == weather_tool.json_name:
location = tool_parameters["location"]
search_results = weather_tool.actual_function(location=location)
tool_return = {"name": weather_tool.json_name, "return": search_results}
else:
raise ValueError(f"Unknown tool name: {tool_name}")
lgs("TOOL: " + str(tool_return))
return tool_return
def restore_message_history(full_history):
"""Restore the complete message history including tool interactions."""
restored = []
for message in full_history:
if message["role"] == "assistant" and "metadata" in message:
tool_interactions = message["metadata"].get("tool_interactions", [])
if tool_interactions:
for tool_msg in tool_interactions:
restored.append(tool_msg)
final_msg = message.copy()
del final_msg["metadata"]["tool_interactions"]
restored.append(final_msg)
else:
restored.append(message)
else:
restored.append(message)
return restored
def iterate_chat(llm, sampling_params, full_history):
"""Handle conversation turns with tool calling."""
tool_interactions = []
for _ in range(10):
prompt = form_chat_prompt(restore_message_history(full_history) + tool_interactions)
output = llm.generate(prompt, sampling_params)
if VERBOSE_SHELL:
print(f"Input prompt: {prompt}")
print("-" * 50)
print(f"Model response: {output.choices[0].text}")
print("=" * 50)
if not output or not output.choices:
raise ValueError("Invalid completion response")
assistant_response = output.choices[0].text.strip()
lgs("ASSISTANT: " + assistant_response.replace("\n", "\\n"))
assistant_response = assistant_response.split(FUNCTION_EOT_STRING)[0].split(EOT_STRING)[0]
tool_request_data = check_assistant_response_for_tool_calls(assistant_response)
if not tool_request_data:
final_message = {
"role": "assistant",
"content": assistant_response,
"metadata": {
"tool_interactions": tool_interactions
}
}
full_history.append(final_message)
return full_history
else:
assistant_message = {
"role": "assistant",
"content": json.dumps(tool_request_data),
}
tool_interactions.append(assistant_message)
tool_return_data = process_tool_request(tool_request_data)
tool_message = {
"role": "function",
"content": json.dumps(tool_return_data)
}
tool_interactions.append(tool_message)
return full_history
def user_conversation(user_message, chat_history, full_history):
"""Handle user input and maintain conversation state."""
if full_history is None:
full_history = []
lgs("USER: " + user_message.replace("\n", "\\n"))
full_history.append({"role": "user", "content": user_message})
updated_history = iterate_chat(llm, sampling_params, full_history)
assistant_answer = updated_history[-1]["content"]
chat_history.append((user_message, assistant_answer))
return "", chat_history, updated_history
llm = LLM(max_model_len=32000)
lgs("STARTING NEW CHAT")
with gr.Blocks() as demo:
gr.Markdown(f"<h2>Weather/Arxiv/SNP Multi-tool Calling Bot</h2>")
chat_state = gr.State([])
chatbot = gr.Chatbot(label="Chat with the multi-tool bot")
user_input = gr.Textbox(
lines=1,
placeholder="Type your message here...",
)
gr.Examples([
[
"What is the current weather in Åfjord?",
],
[
"List some papers about humor in LLMs",
],
[
"What does this SNP do?: rs429358",
]
],
inputs=[user_input],
label="Examples",
)
user_input.submit(
fn=user_conversation,
inputs=[user_input, chatbot, chat_state],
outputs=[user_input, chatbot, chat_state],
queue=False
)
send_button = gr.Button("Send")
send_button.click(
fn=user_conversation,
inputs=[user_input, chatbot, chat_state],
outputs=[user_input, chatbot, chat_state],
queue=False
)
demo.launch()
share_url = demo.share_url |