Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
from openai import OpenAI | |
from typing import List, Tuple | |
CLIENTS = { | |
"perplexity": {"key": os.getenv('PX_KEY'), "endpoint": "https://api.perplexity.ai"}, | |
"hyperbolic": {"key": os.getenv('HYPERBOLIC_XYZ_KEY'), "endpoint": "https://api.hyperbolic.xyz/v1"}, | |
"huggingface": {"key": os.getenv('HF_KEY'), "endpoint": "https://huggingface.co/api/inference-proxy/together"}, | |
} | |
for client_type in CLIENTS: | |
CLIENTS[client_type]["client"] = OpenAI( | |
base_url=CLIENTS[client_type]["endpoint"], | |
api_key=CLIENTS[client_type]["key"] | |
) | |
PASSWORD = os.getenv("PASSWD") | |
# Define available models | |
AVAILABLE_MODELS = { | |
"Llama3.3-70b-Instruct (Hyperbolic.xyz)": { | |
"model_name": "meta-llama/Llama-3.3-70B-Instruct", | |
"type": "hyperbolic" | |
}, | |
"Llama3.1-8b-Instruct (Hyperbolic.xyz)": { | |
"model_name": "meta-llama/Meta-Llama-3.1-8B-Instruct", | |
"type": "hyperbolic" | |
}, | |
"DeepSeek V3 (Hyperbolic.xyz)": { | |
"model_name": "deepseek-ai/DeepSeek-V3", | |
"type": "hyperbolic" | |
}, | |
"DeepSeek V3 (HuggingFace.co)": { | |
"model_name": "deepseek-ai/DeepSeek-V3", | |
"type": "huggingface" | |
}, | |
"Sonar Pro (Perplexity.ai)": { | |
"model_name": "sonar-pro", | |
"type": "perplexity" | |
}, | |
"Sonar (Perplexity.ai)": { | |
"model_name": "sonar", | |
"type": "perplexity" | |
}, | |
} | |
def respond( | |
message: str, | |
history: List[Tuple[str, str]], | |
session_password: str, # added parameter from session state | |
system_message: str, | |
model_choice: str, | |
max_tokens: int, | |
temperature: float, | |
top_p: float, | |
): | |
"""Handles chatbot responses with password re-checking.""" | |
# Re-check the session password on every message | |
if session_password != PASSWORD: | |
yield "Error: Invalid session password. Please refresh the page and enter the correct password." | |
return | |
if model_choice not in AVAILABLE_MODELS: | |
yield "Error: Invalid model selection." | |
return | |
messages = [{"role": "system", "content": system_message}] | |
for user_msg, assistant_msg in history: | |
if user_msg: | |
messages.append({"role": "user", "content": user_msg}) | |
if assistant_msg: | |
messages.append({"role": "assistant", "content": assistant_msg}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
citations = [] | |
selected_client = CLIENTS[AVAILABLE_MODELS[model_choice]["type"]]["client"] | |
try: | |
stream = selected_client.chat.completions.create( | |
model=AVAILABLE_MODELS[model_choice]["model_name"], | |
messages=messages, | |
max_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
stream=True, | |
) | |
for chunk in stream: | |
if hasattr(chunk, "choices") and chunk.choices: | |
token = chunk.choices[0].delta.content or "" | |
response += token | |
yield response # Stream response as it arrives | |
if hasattr(chunk, "citations") and chunk.citations: | |
citations = chunk.citations | |
# Append citations as clickable links, if any | |
if citations: | |
citation_text = "\n\nSources:\n" + "\n".join( | |
[f"[{i+1}] [{url}]({url})" for i, url in enumerate(citations)] | |
) | |
response += citation_text | |
yield response | |
except Exception as e: | |
yield f"Error: {str(e)}" | |
def check_password(input_password): | |
"""Validates the password and, if valid, stores it in session state.""" | |
if input_password == PASSWORD: | |
# Return the password to store in the session state. | |
return gr.update(visible=False), gr.update(visible=True), input_password | |
else: | |
return gr.update(value="", interactive=True), gr.update(visible=False), "" | |
with gr.Blocks() as demo: | |
# A hidden state component to store the session password | |
session_password = gr.State("") | |
with gr.Column(): | |
password_input = gr.Textbox( | |
type="password", label="Enter Password", interactive=True | |
) | |
submit_button = gr.Button("Submit") | |
error_message = gr.Textbox( | |
label="Error", visible=False, interactive=False | |
) | |
with gr.Column(visible=False) as chat_interface: | |
system_prompt = gr.Textbox( | |
value="You are a helpful assistant.", label="System message" | |
) | |
model_choice = gr.Dropdown( | |
choices=list(AVAILABLE_MODELS.keys()), | |
value=list(AVAILABLE_MODELS.keys())[0], | |
label="Select Model" | |
) | |
max_tokens = gr.Slider( | |
minimum=1, maximum=30000, value=2048, step=100, label="Max new tokens" | |
) | |
temperature = gr.Slider( | |
minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature" | |
) | |
top_p = gr.Slider( | |
minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)" | |
) | |
# Note: The session_password is now passed as an additional input to the chat function. | |
chat = gr.ChatInterface( | |
fn=respond, | |
api_name=False, | |
chatbot=gr.Chatbot(height=400), # Set desired height here | |
additional_inputs=[session_password, system_prompt, model_choice, max_tokens, temperature, top_p] | |
) | |
# Now, the submit_button click updates three outputs: the password_input, chat_interface visibility, and session_password state. | |
submit_button.click( | |
fn=check_password, | |
inputs=password_input, | |
outputs=[password_input, chat_interface, session_password] | |
) | |
if __name__ == "__main__": | |
demo.launch() | |