ChatInterface / app.py
ProximileAdmin's picture
Update app.py
02aba1a verified
raw
history blame
4.77 kB
import os
import gradio as gr
from openai import OpenAI
from typing import List, Tuple
CLIENTS = {
"perplexity":{"key":os.getenv('PX_KEY'),"endpoint":"https://api.perplexity.ai"},
"hyperbolic":{"key":os.getenv('HYPERBOLIC_XYZ_KEY'),"endpoint":"https://api.hyperbolic.xyz/v1"},
"huggingface":{"key":os.getenv('HF_KEY'),"endpoint":"https://huggingface.co/api/inference-proxy/together"},
}
for client_type in CLIENTS:
CLIENTS[client_type]["client"] = OpenAI(base_url=CLIENTS[client_type]["endpoint"], api_key=CLIENTS[client_type]["key"])
PASSWORD = os.getenv("PASSWD")
# Define available models
AVAILABLE_MODELS = {
"DeepSeek V3 (Hyperbolic.xyz)": {"model_name":"deepseek-ai/DeepSeek-V3","type":"hyperbolic"},
"DeepSeek V3 (HuggingFace.co)": {"model_name":"deepseek-ai/DeepSeek-V3","type":"huggingface"},
"Llama3.3-70b-Instruct": {"model_name":"meta-llama/Llama-3.3-70B-Instruct","type":"hyperbolic"},
"Llama3.1-8b-Instruct": {"model_name":"meta-llama/Meta-Llama-3.1-8B-Instruct","type":"hyperbolic"},
"Sonar Pro": {"model_name":"sonar-pro","type":"perplexity"},
"Sonar": {"model_name":"sonar","type":"perplexity"},
}
def respond(
message: str,
history: List[Tuple[str, str]],
system_message: str,
model_choice: str,
max_tokens: int,
temperature: float,
top_p: float,
):
"""Handles chatbot responses with Perplexity AI."""
if model_choice not in AVAILABLE_MODELS:
return "Error: Invalid model selection."
messages = [{"role": "system", "content": system_message}]
for user_msg, assistant_msg in history:
if user_msg:
messages.append({"role": "user", "content": user_msg})
if assistant_msg:
messages.append({"role": "assistant", "content": assistant_msg})
messages.append({"role": "user", "content": message})
response = ""
citations = []
selected_client = CLIENTS[AVAILABLE_MODELS[model_choice]["type"]]["client"]
try:
stream = selected_client.chat.completions.create(
model=AVAILABLE_MODELS[model_choice]["model_name"],
messages=messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
stream=True,
)
for chunk in stream:
if hasattr(chunk, "choices") and chunk.choices:
token = chunk.choices[0].delta.content or ""
response += token
yield response # Stream response as it arrives
if hasattr(chunk, "citations") and chunk.citations:
citations = chunk.citations
# Append citations as clickable links
if citations:
citation_text = "\n\nSources:\n" + "\n".join(
[f"[{i+1}] [{url}]({url})" for i, url in enumerate(citations)]
)
response += citation_text
yield response
except Exception as e:
yield f"Error: {str(e)}"
def check_password(input_password):
"""Validates the password before showing the chat interface."""
if input_password == PASSWORD:
return gr.update(visible=False), gr.update(visible=True)
else:
return gr.update(value="", interactive=True), gr.update(visible=False)
with gr.Blocks() as demo:
with gr.Column():
password_input = gr.Textbox(
type="password", label="Enter Password", interactive=True
)
submit_button = gr.Button("Submit")
error_message = gr.Textbox(
label="Error", visible=False, interactive=False
)
with gr.Column(visible=False) as chat_interface:
system_prompt = gr.Textbox(
value="You are a helpful assistant.", label="System message"
)
model_choice = gr.Dropdown(
choices=list(AVAILABLE_MODELS.keys()),
value=list(AVAILABLE_MODELS.keys())[0],
label="Select Model"
)
max_tokens = gr.Slider(
minimum=1, maximum=30000, value=2048, step=100, label="Max new tokens"
)
temperature = gr.Slider(
minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"
)
top_p = gr.Slider(
minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"
)
chat = gr.ChatInterface(
respond,
api_name=False,
chatbot=gr.Chatbot(height=400), # Set the desired height here
additional_inputs=[system_prompt, model_choice, max_tokens, temperature, top_p] # Pass extra parameters
)
submit_button.click(
check_password, inputs=password_input, outputs=[password_input, chat_interface]
)
if __name__ == "__main__":
demo.launch()