Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,12 +3,12 @@ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
|
3 |
import pandas as pd
|
4 |
|
5 |
# Charger le modèle et le tokenizer
|
6 |
-
checkpoint = "
|
7 |
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
8 |
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
|
9 |
|
10 |
# Lire le lexique
|
11 |
-
@st.
|
12 |
def read_lexicon(lexicon):
|
13 |
df = pd.read_csv(lexicon, sep='\t')
|
14 |
df['keyword_no_cat'] = df['lemma'].str.split(' #').str[0].str.strip().str.replace(' ', '_')
|
@@ -52,4 +52,4 @@ if sentence:
|
|
52 |
pictogram_ids = [get_id_picto_from_predicted_lemma(lexicon, lemma) for lemma in sentence_to_map]
|
53 |
|
54 |
html = generate_html(pictogram_ids)
|
55 |
-
st.components.v1.html(html, height=600, scrolling=True)
|
|
|
3 |
import pandas as pd
|
4 |
|
5 |
# Charger le modèle et le tokenizer
|
6 |
+
checkpoint = "your-model-checkpoint"
|
7 |
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
8 |
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
|
9 |
|
10 |
# Lire le lexique
|
11 |
+
@st.cache_data
|
12 |
def read_lexicon(lexicon):
|
13 |
df = pd.read_csv(lexicon, sep='\t')
|
14 |
df['keyword_no_cat'] = df['lemma'].str.split(' #').str[0].str.strip().str.replace(' ', '_')
|
|
|
52 |
pictogram_ids = [get_id_picto_from_predicted_lemma(lexicon, lemma) for lemma in sentence_to_map]
|
53 |
|
54 |
html = generate_html(pictogram_ids)
|
55 |
+
st.components.v1.html(html, height=600, scrolling=True)
|