cecilemacaire's picture
Update app.py
8cd5122 verified
raw
history blame
4.68 kB
import streamlit as st
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import pandas as pd
from fpdf import FPDF
# Interface utilisateur
st.set_page_config(
page_title="Traduction d'une phrase en pictogrammes ARASAAC",
page_icon="📝",
layout="wide"
)
# Charger le modèle et le tokenizer
# checkpoint = "Propicto/t2p-t5-large-orfeo"
checkpoint = "Propicto/t2p-nllb-200-distilled-600M-all"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
# Lire le lexique
@st.cache_data
def read_lexicon(lexicon):
df = pd.read_csv(lexicon, sep='\t')
df['keyword_no_cat'] = df['lemma'].str.split(' #').str[0].str.strip().str.replace(' ', '_')
return df
lexicon = read_lexicon("lexicon.csv")
# Processus de sortie de la traduction
def process_output_trad(pred):
return pred.split()
def get_id_picto_from_predicted_lemma(df_lexicon, lemma):
if lemma.endswith("!"):
lemma = lemma[:-1]
id_picto = df_lexicon.loc[df_lexicon['keyword_no_cat'] == lemma, 'id_picto'].tolist()
return (id_picto[0], lemma) if id_picto else (0, lemma)
# Génération du contenu HTML pour afficher les pictogrammes
def generate_html(ids):
html_content = '<html><head><style>'
html_content += '''
figure {
display: inline-block;
text-align: center;
font-family: Arial, sans-serif;
margin: 0;
}
figcaption {
color: black;
background-color: white;
border-radius: 5px;
}
img {
background-color: white;
margin: 0;
padding: 0;
border-radius: 6px;
}
'''
html_content += '</style></head><body>'
for picto_id, lemma in ids:
if picto_id != 0: # ignore invalid IDs
img_url = f"https://static.arasaac.org/pictograms/{picto_id}/{picto_id}_500.png"
html_content += f'''
<figure>
<img src="{img_url}" alt="{lemma}" width="200" height="200"/>
<figcaption>{lemma}</figcaption>
</figure>
'''
html_content += '</body></html>'
return html_content
def generate_pdf(ids):
pdf = FPDF(orientation='L', unit='mm', format='A4') # 'L' for landscape orientation
pdf.add_page()
pdf.set_auto_page_break(auto=True, margin=15)
# Start positions
x_start = 10
y_start = 10
img_width = 50
img_height = 50
spacing = 1
max_width = 297 # A4 landscape width in mm
current_x = x_start
current_y = y_start
for picto_id, lemma in ids:
if picto_id != 0: # ignore invalid IDs
img_url = f"https://static.arasaac.org/pictograms/{picto_id}/{picto_id}_500.png"
pdf.image(img_url, x=current_x, y=current_y, w=img_width, h=img_height)
pdf.set_xy(current_x, current_y + img_height + 5)
pdf.set_font("Arial", size=12)
pdf.cell(img_width, 10, txt=lemma, ln=1, align='C')
current_x += img_width + spacing
# Move to the next line if exceeds max width
if current_x + img_width > max_width:
current_x = x_start
current_y += img_height + spacing + 10 # Adjust for image height and some spacing
pdf_path = "pictograms.pdf"
pdf.output(pdf_path)
return pdf_path
info_visible = False
st.title("Traduction d'une phrase en pictogrammes ARASAAC")
if st.button("ℹ️"):
info_visible = not info_visible
# Contenu de l'information qui s'affiche lorsque le bouton est cliqué
if info_visible:
st.info("Ceci est une zone d'information. Elle se ferme lorsque vous recliquez sur le bouton ℹ️.")
sentence = st.text_input("Entrez une phrase en français:")
if sentence:
with st.spinner("Affichage des pictogrammes..."):
inputs = tokenizer(sentence, return_tensors="pt").input_ids
outputs = model.generate(inputs, max_new_tokens=40, do_sample=True, top_k=30, top_p=0.95)
pred = tokenizer.decode(outputs[0], skip_special_tokens=True)
sentence_to_map = process_output_trad(pred)
pictogram_ids = [get_id_picto_from_predicted_lemma(lexicon, lemma) for lemma in sentence_to_map]
html = generate_html(pictogram_ids)
st.components.v1.html(html, height=500, scrolling=True)
# Container to hold the download button
pdf_path = generate_pdf(pictogram_ids)
with open(pdf_path, "rb") as pdf_file:
st.download_button(label="Télécharger la traduction en PDF", data=pdf_file, file_name="pictograms.pdf", mime="application/pdf")