File size: 20,304 Bytes
33523ce
b1935a9
 
 
 
 
 
 
33523ce
b1935a9
 
 
 
 
 
33523ce
b1935a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
import gradio as gr
import numpy as np
import pandas as pd
import torch
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
from transformers import BertTokenizerFast
import matplotlib.pyplot as plt
import json

# Initialize models
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
ner_pipeline = pipeline("ner", model="dslim/bert-base-NER")
pos_model = AutoModelForTokenClassification.from_pretrained("vblagoje/bert-english-uncased-finetuned-pos")
pos_tokenizer = BertTokenizerFast.from_pretrained("vblagoje/bert-english-uncased-finetuned-pos")
pos_pipeline = pipeline("token-classification", model=pos_model, tokenizer=pos_tokenizer)

# Intent classification - using zero-shot classification
intent_classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")

def get_token_colors(token_type):
    colors = {
        "prefix": "#D8BFD8",  # Light purple
        "suffix": "#AEDAA4",  # Light green
        "stem": "#A4C2F4",    # Light blue
        "compound_first": "#FFCC80",  # Light orange
        "compound_second": "#FFCC80", # Light orange
        "word": "#E5E5E5"     # Light gray
    }
    return colors.get(token_type, "#E5E5E5")

def simulate_historical_data(token):
    """Generate simulated historical usage data for a token"""
    eras = ["1900s", "1950s", "1980s", "2000s", "2010s", "Present"]
    
    # Different patterns based on token characteristics
    if len(token) > 8:
        # Possibly a technical term - recent growth
        values = [10, 20, 30, 60, 85, 95]
    elif token.startswith(("un", "re", "de", "pre")):
        # Prefix words tend to be older
        values = [45, 50, 60, 70, 75, 80]
    else:
        # Standard pattern for common words
        base = 50 + (hash(token) % 30)
        noise = np.random.normal(0, 5, 6)
        values = [max(5, min(95, base + i*5 + n)) for i, n in enumerate(noise)]
    
    return list(zip(eras, values))

def generate_origin_data(token):
    """Generate simulated origin/etymology data for a token"""
    origins = [
        {"era": "Ancient", "language": "Latin"},
        {"era": "Ancient", "language": "Greek"},
        {"era": "Medieval", "language": "Old English"},
        {"era": "16th century", "language": "French"},
        {"era": "18th century", "language": "Germanic"},
        {"era": "19th century", "language": "Anglo-Saxon"},
        {"era": "20th century", "language": "Modern English"}
    ]
    
    # Deterministic selection based on the token
    index = hash(token) % len(origins)
    origin = origins[index]
    
    note = f"First appeared in {origin['era']} texts derived from {origin['language']}."
    origin["note"] = note
    
    return origin

def analyze_token_types(tokens):
    """Identify token types (prefix, suffix, compound, etc.)"""
    processed_tokens = []
    
    prefixes = ["un", "re", "de", "pre", "post", "anti", "pro", "inter", "sub", "super"]
    suffixes = ["ing", "ed", "ly", "ment", "tion", "able", "ible", "ness", "ful", "less"]
    
    for token in tokens:
        token_text = token.lower()
        token_type = "word"
        
        # Check for prefixes
        for prefix in prefixes:
            if token_text.startswith(prefix) and len(token_text) > len(prefix) + 2:
                if token_text != prefix:  # Make sure the word isn't just the prefix
                    token_type = "prefix"
                    break
        
        # Check for suffixes
        if token_type == "word":
            for suffix in suffixes:
                if token_text.endswith(suffix) and len(token_text) > len(suffix) + 2:
                    token_type = "suffix"
                    break
        
        # Check for compound words (simplified)
        if token_type == "word" and len(token_text) > 8:
            token_type = "compound_first"  # Simplified - in reality would need more analysis
        
        processed_tokens.append({
            "text": token_text,
            "type": token_type
        })
    
    return processed_tokens

def plot_historical_data(historical_data):
    """Create a plot of historical usage data"""
    eras = [item[0] for item in historical_data]
    values = [item[1] for item in historical_data]
    
    plt.figure(figsize=(8, 3))
    plt.bar(eras, values, color='skyblue')
    plt.title('Historical Usage')
    plt.xlabel('Era')
    plt.ylabel('Usage Level')
    plt.ylim(0, 100)
    plt.xticks(rotation=45)
    plt.tight_layout()
    
    return plt

def analyze_keyword(keyword):
    if not keyword.strip():
        return None, None, None, None, None
    
    # Basic tokenization
    words = keyword.strip().lower().split()
    
    # Get token types
    token_analysis = analyze_token_types(words)
    
    # Get NER tags
    ner_results = ner_pipeline(keyword)
    
    # Get POS tags
    pos_results = pos_pipeline(keyword)
    
    # Process and organize results
    full_token_analysis = []
    for token in token_analysis:
        # Find POS tag for this token
        pos_tag = "NOUN"  # Default
        for pos_result in pos_results:
            if pos_result["word"].lower() == token["text"]:
                pos_tag = pos_result["entity"]
                break
        
        # Find entity type if any
        entity_type = None
        for ner_result in ner_results:
            if ner_result["word"].lower() == token["text"]:
                entity_type = ner_result["entity"]
                break
        
        # Generate historical data
        historical_data = simulate_historical_data(token["text"])
        
        # Generate origin data
        origin = generate_origin_data(token["text"])
        
        # Calculate importance (simplified algorithm)
        importance = 60 + (len(token["text"]) * 2)
        importance = min(95, importance)
        
        # Generate related terms (simplified)
        related_terms = [f"{token['text']}-related-1", f"{token['text']}-related-2"]
        
        full_token_analysis.append({
            "token": token["text"],
            "type": token["type"],
            "posTag": pos_tag,
            "entityType": entity_type,
            "importance": importance,
            "historicalData": historical_data,
            "origin": origin,
            "relatedTerms": related_terms
        })
    
    # Intent analysis
    intent_result = intent_classifier(
        keyword,
        candidate_labels=["informational", "navigational", "transactional"]
    )
    
    intent_analysis = {
        "type": intent_result["labels"][0].capitalize(),
        "strength": round(intent_result["scores"][0] * 100),
        "mutations": [
            f"{intent_result['labels'][0]}-variation-1", 
            f"{intent_result['labels'][0]}-variation-2"
        ]
    }
    
    # Evolution potential (simplified calculation)
    evolution_potential = min(95, 65 + (len(keyword) % 30))
    
    # Predicted trends (simplified)
    trends = [
        "Voice search adaptation",
        "Visual search integration"
    ]
    
    # Evolution chart data (simulated)
    evolution_data = [
        {"month": "Jan", "searchVolume": 1000, "competitionScore": 45, "intentClarity": 80},
        {"month": "Feb", "searchVolume": 1200, "competitionScore": 48, "intentClarity": 82},
        {"month": "Mar", "searchVolume": 1100, "competitionScore": 52, "intentClarity": 85},
        {"month": "Apr", "searchVolume": 1400, "competitionScore": 55, "intentClarity": 88},
        {"month": "May", "searchVolume": 1800, "competitionScore": 58, "intentClarity": 90},
        {"month": "Jun", "searchVolume": 2200, "competitionScore": 60, "intentClarity": 92}
    ]
    
    # Create plots
    evolution_chart = create_evolution_chart(evolution_data)
    
    # Generate HTML for token visualization
    token_viz_html = generate_token_visualization_html(token_analysis, full_token_analysis)
    
    # Generate HTML for full analysis
    analysis_html = generate_full_analysis_html(
        keyword, 
        full_token_analysis, 
        intent_analysis, 
        evolution_potential, 
        trends
    )
    
    # Generate JSON results
    json_results = {
        "keyword": keyword,
        "tokenAnalysis": full_token_analysis,
        "intentAnalysis": intent_analysis,
        "evolutionPotential": evolution_potential,
        "predictedTrends": trends
    }
    
    return token_viz_html, analysis_html, json_results, evolution_chart, full_token_analysis

def create_evolution_chart(data):
    """Create an evolution chart from data"""
    df = pd.DataFrame(data)
    
    plt.figure(figsize=(10, 5))
    plt.plot(df['month'], df['searchVolume'], marker='o', label='Search Volume')
    plt.plot(df['month'], df['competitionScore']*20, marker='s', label='Competition Score')
    plt.plot(df['month'], df['intentClarity']*20, marker='^', label='Intent Clarity')
    
    plt.title('Predicted Evolution')
    plt.xlabel('Month')
    plt.ylabel('Value')
    plt.legend()
    plt.grid(True, linestyle='--', alpha=0.7)
    plt.tight_layout()
    
    return plt

def generate_token_visualization_html(token_analysis, full_analysis):
    """Generate HTML for token visualization"""
    html = """
    <div style="font-family: Arial, sans-serif; padding: 20px; border: 1px solid #ddd; border-radius: 8px;">
        <h2 style="margin-top: 0;">Token Visualization</h2>
        
        <div style="margin-bottom: 20px; padding: 15px; background-color: #f8f9fa; border-radius: 6px;">
            <div style="margin-bottom: 8px; font-weight: bold; color: #4a5568;">Human View:</div>
            <div style="display: flex; flex-wrap: wrap; gap: 8px;">
    """
    
    # Add human view tokens
    for token in token_analysis:
        html += f"""
        <div style="padding: 6px 12px; background-color: white; border: 1px solid #cbd5e0; border-radius: 4px;">
            {token['text']}
        </div>
        """
    
    html += """
            </div>
        </div>
        
        <div style="text-align: center; margin: 15px 0;">
            <span style="font-size: 20px;">↓</span>
        </div>
        
        <div style="padding: 15px; background-color: #f0fff4; border-radius: 6px;">
            <div style="margin-bottom: 8px; font-weight: bold; color: #2f855a;">Machine View:</div>
            <div style="display: flex; flex-wrap: wrap; gap: 8px;">
    """
    
    # Add machine view tokens
    for token in full_analysis:
        bg_color = get_token_colors(token["type"])
        html += f"""
        <div style="padding: 6px 12px; background-color: {bg_color}; border: 1px solid #a0aec0; border-radius: 4px; font-family: monospace;">
            {token['token']}
            <span style="font-size: 10px; opacity: 0.7; display: block;">{token['type']}</span>
        </div>
        """
    
    html += """
            </div>
        </div>
        
        <div style="margin-top: 20px; display: grid; grid-template-columns: repeat(3, 1fr); gap: 10px; text-align: center;">
    """
    
    # Add stats
    word_count = len(token_analysis)
    token_count = len(full_analysis)
    ratio = round(token_count / max(1, word_count), 2)
    
    html += f"""
        <div style="background-color: #ebf8ff; padding: 10px; border-radius: 6px;">
            <div style="font-size: 24px; font-weight: bold; color: #3182ce;">{word_count}</div>
            <div style="font-size: 14px; color: #4299e1;">Words</div>
        </div>
        
        <div style="background-color: #f0fff4; padding: 10px; border-radius: 6px;">
            <div style="font-size: 24px; font-weight: bold; color: #38a169;">{token_count}</div>
            <div style="font-size: 14px; color: #48bb78;">Tokens</div>
        </div>
        
        <div style="background-color: #faf5ff; padding: 10px; border-radius: 6px;">
            <div style="font-size: 24px; font-weight: bold; color: #805ad5;">{ratio}</div>
            <div style="font-size: 14px; color: #9f7aea;">Tokens per Word</div>
        </div>
    """
    
    html += """
        </div>
    </div>
    """
    
    return html

def generate_full_analysis_html(keyword, token_analysis, intent_analysis, evolution_potential, trends):
    """Generate HTML for full keyword analysis"""
    html = f"""
    <div style="font-family: Arial, sans-serif; padding: 20px; border: 1px solid #ddd; border-radius: 8px;">
        <h2 style="margin-top: 0;">Keyword DNA Analysis for: {keyword}</h2>
        
        <div style="display: grid; grid-template-columns: 1fr 1fr; gap: 15px; margin-bottom: 20px;">
            <div style="padding: 15px; border: 1px solid #e2e8f0; border-radius: 6px;">
                <h3 style="margin-top: 0; font-size: 16px;">Intent Gene</h3>
                <div style="display: flex; justify-content: space-between; margin-bottom: 10px;">
                    <span>Type:</span>
                    <span>{intent_analysis['type']}</span>
                </div>
                <div style="display: flex; justify-content: space-between; align-items: center;">
                    <span>Strength:</span>
                    <div style="width: 120px; height: 8px; background-color: #edf2f7; border-radius: 4px; overflow: hidden;">
                        <div style="height: 100%; background-color: #48bb78; width: {intent_analysis['strength']}%;"></div>
                    </div>
                </div>
            </div>
            
            <div style="padding: 15px; border: 1px solid #e2e8f0; border-radius: 6px;">
                <h3 style="margin-top: 0; font-size: 16px;">Evolution Potential</h3>
                <div style="display: flex; justify-content: center; align-items: center; height: 100px;">
                    <div style="position: relative; width: 100px; height: 100px;">
                        <div style="position: absolute; inset: 0; display: flex; align-items: center; justify-content: center;">
                            <span style="font-size: 24px; font-weight: bold;">{evolution_potential}</span>
                        </div>
                        <svg width="100" height="100" viewBox="0 0 36 36">
                            <path
                              d="M18 2.0845 a 15.9155 15.9155 0 0 1 0 31.831 a 15.9155 15.9155 0 0 1 0 -31.831"
                              fill="none"
                              stroke="#4CAF50"
                              stroke-width="3"
                              stroke-dasharray="{evolution_potential}, 100"
                            />
                        </svg>
                    </div>
                </div>
            </div>
        </div>
        
        <div style="padding: 15px; border: 1px solid #e2e8f0; border-radius: 6px; margin-bottom: 20px;">
            <h3 style="margin-top: 0; font-size: 16px;">Future Mutations</h3>
            <div style="display: flex; flex-direction: column; gap: 8px;">
    """
    
    # Add trends
    for trend in trends:
        html += f"""
        <div style="display: flex; align-items: center; gap: 8px;">
            <span style="color: #48bb78;">β†—</span>
            <span>{trend}</span>
        </div>
        """
    
    html += """
            </div>
        </div>
        
        <h3 style="margin-bottom: 10px;">Token Details & Historical Analysis</h3>
    """
    
    # Add token details
    for token in token_analysis:
        html += f"""
        <div style="padding: 15px; border: 1px solid #e2e8f0; border-radius: 6px; margin-bottom: 15px;">
            <div style="display: flex; justify-content: space-between; align-items: center; margin-bottom: 10px;">
                <div style="display: flex; align-items: center; gap: 8px;">
                    <span style="font-size: 18px; font-weight: medium;">{token['token']}</span>
                    <span style="padding: 2px 8px; background-color: #edf2f7; border-radius: 4px; font-size: 12px;">{token['posTag']}</span>
        """
        
        if token['entityType']:
            html += f"""
            <span style="padding: 2px 8px; background-color: #ebf8ff; color: #3182ce; border-radius: 4px; font-size: 12px; display: flex; align-items: center;">
                β“˜ {token['entityType']}
            </span>
            """
        
        html += f"""
                </div>
                <div style="display: flex; align-items: center; gap: 4px;">
                    <span style="font-size: 12px; color: #718096;">Importance:</span>
                    <div style="width: 64px; height: 8px; background-color: #edf2f7; border-radius: 4px; overflow: hidden;">
                        <div style="height: 100%; background-color: #4299e1; width: {token['importance']}%;"></div>
                    </div>
                </div>
            </div>
            
            <div style="margin-top: 15px;">
                <div style="font-size: 12px; color: #718096; margin-bottom: 4px;">Historical Relevance:</div>
                <div style="border: 1px solid #e2e8f0; border-radius: 4px; padding: 10px; background-color: #f7fafc;">
                    <div style="font-size: 12px; margin-bottom: 8px;">
                        <span style="font-weight: 500;">Origin: </span>
                        <span>{token['origin']['era']}, </span>
                        <span style="font-style: italic;">{token['origin']['language']}</span>
                    </div>
                    <div style="font-size: 12px; margin-bottom: 12px;">{token['origin']['note']}</div>
                    
                    <div style="display: flex; align-items: flex-end; height: 50px; gap: 4px; margin-top: 8px;">
        """
        
        # Add historical data bars
        for period, value in token['historicalData']:
            opacity = 0.3 + (token['historicalData'].index((period, value)) * 0.1)
            html += f"""
            <div style="display: flex; flex-direction: column; align-items: center; flex: 1;">
                <div style="width: 100%; background-color: rgba(66, 153, 225, {opacity}); border-radius: 2px 2px 0 0; height: {max(4, value)}%;"></div>
                <div style="font-size: 9px; margin-top: 4px; color: #718096; transform: rotate(45deg); transform-origin: top left; white-space: nowrap;">
                    {period}
                </div>
            </div>
            """
        
        html += """
                    </div>
                </div>
            </div>
        </div>
        """
    
    html += """
    </div>
    """
    
    return html

# Create the Gradio interface
with gr.Blocks(css="footer {visibility: hidden}") as demo:
    gr.Markdown("# Keyword DNA Analyzer")
    gr.Markdown("Analyze the linguistic DNA of your keywords to understand their structure, intent, and potential.")
    
    with gr.Row():
        with gr.Column():
            input_text = gr.Textbox(label="Enter keyword to analyze", placeholder="e.g. artificial intelligence")
            analyze_btn = gr.Button("Analyze DNA", variant="primary")
            
            with gr.Row():
                example_btns = []
                for example in ["preprocessing", "breakdown", "artificial intelligence", "transformer model", "machine learning"]:
                    example_btns.append(gr.Button(example))
            
        with gr.Column():
            with gr.Tabs():
                with gr.Tab("Token Visualization"):
                    token_viz_html = gr.HTML()
                
                with gr.Tab("Full Analysis"):
                    analysis_html = gr.HTML()
                
                with gr.Tab("Evolution Chart"):
                    evolution_chart = gr.Plot()
                
                with gr.Tab("Raw Data"):
                    json_output = gr.JSON()
    
    # Set up event handlers
    analyze_btn.click(
        analyze_keyword,
        inputs=[input_text],
        outputs=[token_viz_html, analysis_html, json_output, evolution_chart, None]
    )
    
    # Example buttons
    for btn in example_btns:
        btn.click(
            lambda btn_text: btn_text,
            inputs=[btn],
            outputs=[input_text]
        ).then(
            analyze_keyword,
            inputs=[input_text],
            outputs=[token_viz_html, analysis_html, json_output, evolution_chart, None]
        )

# Launch the app
demo.launch()