Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,355 Bytes
0d19ec9 32b7c72 0d19ec9 32b7c72 0d19ec9 32b7c72 0d19ec9 1b8c8fd 0d19ec9 1b8c8fd 0d19ec9 32b7c72 0d19ec9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
import os
import torch
import gradio as gr
from PIL import Image, ImageOps
from huggingface_hub import snapshot_download
from pyramid_dit import PyramidDiTForVideoGeneration
from diffusers.utils import export_to_video
import spaces
import uuid
is_canonical = True if os.environ.get("SPACE_ID") == "Pyramid-Flow/pyramid-flow" else False
# Constants
MODEL_PATH = "pyramid-flow-model"
MODEL_REPO = "rain1011/pyramid-flow-sd3"
MODEL_VARIANT = "diffusion_transformer_768p"
MODEL_DTYPE = "bf16"
def center_crop(image, target_width, target_height):
width, height = image.size
aspect_ratio_target = target_width / target_height
aspect_ratio_image = width / height
if aspect_ratio_image > aspect_ratio_target:
# Crop the width (left and right)
new_width = int(height * aspect_ratio_target)
left = (width - new_width) // 2
right = left + new_width
top, bottom = 0, height
else:
# Crop the height (top and bottom)
new_height = int(width / aspect_ratio_target)
top = (height - new_height) // 2
bottom = top + new_height
left, right = 0, width
image = image.crop((left, top, right, bottom))
return image
# Download and load the model
def load_model():
if not os.path.exists(MODEL_PATH):
snapshot_download(MODEL_REPO, local_dir=MODEL_PATH, local_dir_use_symlinks=False, repo_type='model')
model = PyramidDiTForVideoGeneration(
MODEL_PATH,
MODEL_DTYPE,
model_variant=MODEL_VARIANT,
)
model.vae.to("cuda")
model.dit.to("cuda")
model.text_encoder.to("cuda")
model.vae.enable_tiling()
return model
# Global model variable
model = load_model()
# Text-to-video generation function
@spaces.GPU(duration=140)
def generate_video(prompt, image=None, duration=3, guidance_scale=9, video_guidance_scale=5, frames_per_second=8, progress=gr.Progress(track_tqdm=True)):
multiplier = 1.2 if is_canonical else 3.0
temp = int(duration * multiplier) + 1
torch_dtype = torch.bfloat16 if MODEL_DTYPE == "bf16" else torch.float32
if(image):
cropped_image = center_crop(image, 1280, 768)
resized_image = cropped_image.resize((1280, 768))
with torch.no_grad(), torch.cuda.amp.autocast(enabled=True, dtype=torch_dtype):
frames = model.generate_i2v(
prompt=prompt,
input_image=resized_image,
num_inference_steps=[10, 10, 10],
temp=temp,
guidance_scale=7.0,
video_guidance_scale=video_guidance_scale,
output_type="pil",
save_memory=True,
)
else:
with torch.no_grad(), torch.cuda.amp.autocast(enabled=True, dtype=torch_dtype):
frames = model.generate(
prompt=prompt,
num_inference_steps=[20, 20, 20],
video_num_inference_steps=[10, 10, 10],
height=768,
width=1280,
temp=temp,
guidance_scale=guidance_scale,
video_guidance_scale=video_guidance_scale,
output_type="pil",
save_memory=True,
)
output_path = f"{str(uuid.uuid4())}_output_video.mp4"
export_to_video(frames, output_path, fps=frames_per_second)
return output_path
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# R1")
with gr.Row():
with gr.Column():
with gr.Accordion("Image to Video (optional)", open=False):
i2v_image = gr.Image(type="pil", label="Input Image")
t2v_prompt = gr.Textbox(label="Prompt")
with gr.Accordion("Advanced settings", open=False):
t2v_duration = gr.Slider(minimum=1, maximum=3 if is_canonical else 10, value=3 if is_canonical else 5, step=1, label="Duration (seconds)", visible=not is_canonical)
t2v_fps = gr.Slider(minimum=8, maximum=24, step=16, value=8 if is_canonical else 24, label="Frames per second", visible=is_canonical)
t2v_guidance_scale = gr.Slider(minimum=1, maximum=15, value=9, step=0.1, label="Guidance Scale")
t2v_video_guidance_scale = gr.Slider(minimum=1, maximum=15, value=5, step=0.1, label="Video Guidance Scale")
t2v_generate_btn = gr.Button("Generate Video")
with gr.Column():
t2v_output = gr.Video(label=f"Generated Video")
gr.Examples(
examples=[
"A movie trailer featuring the adventures of the 30 year old space man wearing a red wool knitted motorcycle helmet, blue sky, salt desert, cinematic style, shot on 35mm film, vivid colors",
"Beautiful, snowy Tokyo city is bustling. The camera moves through the bustling city street, following several people enjoying the beautiful snowy weather and shopping at nearby stalls. Gorgeous sakura petals are flying through the wind along with snowflakes"
],
fn=generate_video,
inputs=t2v_prompt,
outputs=t2v_output,
cache_examples=True,
cache_mode="lazy"
)
t2v_generate_btn.click(
generate_video,
inputs=[t2v_prompt, i2v_image, t2v_duration, t2v_guidance_scale, t2v_video_guidance_scale, t2v_fps],
outputs=t2v_output
)
demo.launch() |