# # --------------------------------------------------------------------------------------- | |
# # Imports and Options | |
# # --------------------------------------------------------------------------------------- | |
# import streamlit as st | |
# import pandas as pd | |
# import requests | |
# import re | |
# import fitz # PyMuPDF | |
# import io | |
# import matplotlib.pyplot as plt | |
# from PIL import Image | |
# from transformers import AutoProcessor, AutoModelForVision2Seq | |
# from docling_core.types.doc import DoclingDocument | |
# from docling_core.types.doc.document import DocTagsDocument | |
# import torch | |
# import os | |
# from huggingface_hub import InferenceClient | |
# # --------------------------------------------------------------------------------------- | |
# # Streamlit Page Configuration | |
# # --------------------------------------------------------------------------------------- | |
# st.set_page_config( | |
# page_title="Choose Your Own Adventure (Topic Extraction) PDF Analysis App", | |
# page_icon=":bar_chart:", | |
# layout="centered", | |
# initial_sidebar_state="auto", | |
# menu_items={ | |
# 'Get Help': 'mailto:[email protected]', | |
# 'About': "This app is built to support PDF analysis" | |
# } | |
# ) | |
# # --------------------------------------------------------------------------------------- | |
# # Session State Initialization | |
# # --------------------------------------------------------------------------------------- | |
# for key in ['pdf_processed', 'markdown_texts', 'df']: | |
# if key not in st.session_state: | |
# st.session_state[key] = False if key == 'pdf_processed' else [] | |
# # --------------------------------------------------------------------------------------- | |
# # API Configuration | |
# # --------------------------------------------------------------------------------------- | |
# # API_URL = "https://api.stack-ai.com/inference/v0/run/2df89a6c-a4af-4576-880e-27058e498f02/67acad8b0603ba4631db38e7" | |
# # headers = { | |
# # 'Authorization': 'Bearer a9e4979e-cdbe-49ea-a193-53562a784805', | |
# # 'Content-Type': 'application/json' | |
# # } | |
# # Retrieve Hugging Face API key from environment variables | |
# hf_api_key = os.getenv('HF_API_KEY') | |
# if not hf_api_key: | |
# raise ValueError("HF_API_KEY not set in environment variables") | |
# # Create the Hugging Face inference client | |
# client = InferenceClient(api_key=hf_api_key) | |
# # # --------------------------------------------------------------------------------------- | |
# # # Survey Analysis Class | |
# # # --------------------------------------------------------------------------------------- | |
# # class SurveyAnalysis: | |
# # def prepare_llm_input(self, survey_response, topics): | |
# # topic_descriptions = "\n".join([f"- **{t}**: {d}" for t, d in topics.items()]) | |
# # return f"""Extract and summarize PDF notes based on topics: | |
# # {topic_descriptions} | |
# # Instructions: | |
# # - Extract exact quotes per topic. | |
# # - Ignore irrelevant topics. | |
# # Format: | |
# # [Topic] | |
# # - "Exact quote" | |
# # Meeting Notes: | |
# # {survey_response} | |
# # """ | |
# # def query_api(self, payload): | |
# # try: | |
# # res = requests.post(API_URL, headers=headers, json=payload, timeout=60) | |
# # res.raise_for_status() | |
# # return res.json() | |
# # except requests.exceptions.RequestException as e: | |
# # st.error(f"API request failed: {e}") | |
# # return {'outputs': {'out-0': ''}} | |
# # def extract_meeting_notes(self, response): | |
# # return response.get('outputs', {}).get('out-0', '') | |
# # def process_dataframe(self, df, topics): | |
# # results = [] | |
# # for _, row in df.iterrows(): | |
# # llm_input = self.prepare_llm_input(row['Document_Text'], topics) | |
# # payload = {"user_id": "user", "in-0": llm_input} | |
# # response = self.query_api(payload) | |
# # notes = self.extract_meeting_notes(response) | |
# # results.append({'Document_Text': row['Document_Text'], 'Topic_Summary': notes}) | |
# # return pd.concat([df.reset_index(drop=True), pd.DataFrame(results)['Topic_Summary']], axis=1) | |
# # --------------------------------------------------------------------------------------- | |
# # Survey Analysis Class | |
# # --------------------------------------------------------------------------------------- | |
# class SurveyAnalysis: | |
# def prepare_llm_input(self, survey_response, topics): | |
# topic_descriptions = "\n".join([f"- **{t}**: {d}" for t, d in topics.items()]) | |
# return f"""Extract and summarize PDF notes based on topics: | |
# {topic_descriptions} | |
# Instructions: | |
# - Extract exact quotes per topic. | |
# - Ignore irrelevant topics. | |
# Format: | |
# [Topic] | |
# - "Exact quote" | |
# Meeting Notes: | |
# {survey_response} | |
# """ | |
# def prompt_response_from_hf_llm(self, llm_input): | |
# # Define a system prompt to guide the model's responses | |
# system_prompt = """ | |
# <Persona> An expert Implementation Specialist at Michigan's Multi-Tiered System of Support Technical Assistance Center (MiMTSS TA Center) with deep expertise in SWPBIS, SEL, Structured Literacy, Science of Reading, and family engagement practices.</Persona> | |
# <Task> Analyze educational data and provide evidence-based recommendations for improving student outcomes across multiple tiers of support, drawing from established frameworks in behavioral interventions, literacy instruction, and family engagement.</Task> | |
# <Context> Operating within Michigan's educational system to support schools in implementing multi-tiered support systems, with access to student metrics data and knowledge of state-specific educational requirements and MTSS frameworks. </Context> | |
# <Format> Deliver insights through clear, actionable recommendations supported by data analysis, incorporating technical expertise while maintaining accessibility for educators and administrators at various levels of MTSS implementation.</Format> | |
# """ | |
# # Generate the refined prompt using Hugging Face API | |
# response = client.chat.completions.create( | |
# model="meta-llama/Llama-3.1-70B-Instruct", | |
# messages=[ | |
# {"role": "system", "content": system_prompt}, # Add system prompt here | |
# {"role": "user", "content": llm_input} | |
# ], | |
# stream=True, | |
# temperature=0.5, | |
# max_tokens=1024, | |
# top_p=0.7 | |
# ) | |
# # Combine messages if response is streamed | |
# response_content = "" | |
# for message in response: | |
# response_content += message.choices[0].delta.content | |
# return response_content.strip() | |
# def extract_text(self, response): | |
# return response | |
# def process_dataframe(self, df, topics): | |
# results = [] | |
# for _, row in df.iterrows(): | |
# llm_input = self.prepare_llm_input(row['Document_Text'], topics) | |
# response = self.prompt_response_from_hf_llm(llm_input) | |
# notes = self.extract_text(response) | |
# results.append({'Document_Text': row['Document_Text'], 'Topic_Summary': notes}) | |
# return pd.concat([df.reset_index(drop=True), pd.DataFrame(results)['Topic_Summary']], axis=1) | |
# # --------------------------------------------------------------------------------------- | |
# # Helper Functions | |
# # --------------------------------------------------------------------------------------- | |
# @st.cache_resource | |
# def load_smol_docling(): | |
# device = "cuda" if torch.cuda.is_available() else "cpu" | |
# processor = AutoProcessor.from_pretrained("ds4sd/SmolDocling-256M-preview") | |
# model = AutoModelForVision2Seq.from_pretrained( | |
# "ds4sd/SmolDocling-256M-preview", torch_dtype=torch.float32 | |
# ).to(device) | |
# return model, processor | |
# model, processor = load_smol_docling() | |
# def convert_pdf_to_images(pdf_file, dpi=150, max_size=1600): | |
# images = [] | |
# doc = fitz.open(stream=pdf_file.read(), filetype="pdf") | |
# for page in doc: | |
# pix = page.get_pixmap(dpi=dpi) | |
# img = Image.open(io.BytesIO(pix.tobytes("png"))).convert("RGB") | |
# img.thumbnail((max_size, max_size), Image.LANCZOS) | |
# images.append(img) | |
# return images | |
# def extract_markdown_from_image(image): | |
# device = "cuda" if torch.cuda.is_available() else "cpu" | |
# prompt = processor.apply_chat_template([{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "Convert this page to docling."}]}], add_generation_prompt=True) | |
# inputs = processor(text=prompt, images=[image], return_tensors="pt").to(device) | |
# with torch.no_grad(): | |
# generated_ids = model.generate(**inputs, max_new_tokens=1024) | |
# doctags = processor.batch_decode(generated_ids[:, inputs.input_ids.shape[1]:], skip_special_tokens=False)[0].replace("<end_of_utterance>", "").strip() | |
# doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([doctags], [image]) | |
# doc = DoclingDocument(name="ExtractedDocument") | |
# doc.load_from_doctags(doctags_doc) | |
# return doc.export_to_markdown() | |
# def extract_excerpts(processed_df): | |
# rows = [] | |
# for _, r in processed_df.iterrows(): | |
# for sec in re.split(r'\n(?=\[)', r['Topic_Summary']): | |
# topic_match = re.match(r'\[([^\]]+)\]', sec) | |
# if topic_match: | |
# topic = topic_match.group(1) | |
# excerpts = re.findall(r'- "([^"]+)"', sec) | |
# for excerpt in excerpts: | |
# rows.append({'Document_Text': r['Document_Text'], 'Topic_Summary': r['Topic_Summary'], 'Excerpt': excerpt, 'Topic': topic}) | |
# return pd.DataFrame(rows) | |
# # --------------------------------------------------------------------------------------- | |
# # Streamlit UI | |
# # --------------------------------------------------------------------------------------- | |
# st.title("Choose Your Own Adventure (Topic Extraction) PDF Analysis App") | |
# uploaded_file = st.file_uploader("Upload PDF file", type=["pdf"]) | |
# if uploaded_file and not st.session_state['pdf_processed']: | |
# with st.spinner("Processing PDF..."): | |
# images = convert_pdf_to_images(uploaded_file) | |
# markdown_texts = [extract_markdown_from_image(img) for img in images] | |
# st.session_state['df'] = pd.DataFrame({'Document_Text': markdown_texts}) | |
# st.session_state['pdf_processed'] = True | |
# st.success("PDF processed successfully!") | |
# if st.session_state['pdf_processed']: | |
# st.markdown("### Extracted Text Preview") | |
# st.write(st.session_state['df'].head()) | |
# st.markdown("### Enter Topics and Descriptions") | |
# num_topics = st.number_input("Number of topics", 1, 10, 1) | |
# topics = {} | |
# for i in range(num_topics): | |
# topic = st.text_input(f"Topic {i+1} Name", key=f"topic_{i}") | |
# desc = st.text_area(f"Topic {i+1} Description", key=f"description_{i}") | |
# if topic and desc: | |
# topics[topic] = desc | |
# if st.button("Run Analysis"): | |
# if not topics: | |
# st.warning("Please enter at least one topic and description.") | |
# st.stop() | |
# analyzer = SurveyAnalysis() | |
# processed_df = analyzer.process_dataframe(st.session_state['df'], topics) | |
# extracted_df = extract_excerpts(processed_df) | |
# st.markdown("### Extracted Excerpts") | |
# st.dataframe(extracted_df) | |
# csv = extracted_df.to_csv(index=False) | |
# st.download_button("Download CSV", csv, "extracted_notes.csv", "text/csv") | |
# topic_counts = extracted_df['Topic'].value_counts() | |
# fig, ax = plt.subplots() | |
# topic_counts.plot.bar(ax=ax, color='#3d9aa1') | |
# st.pyplot(fig) | |
# if not uploaded_file: | |
# st.info("Please upload a PDF file to begin.") | |
# --------------------------------------------------------------------------------------- | |
# Imports and Options | |
# --------------------------------------------------------------------------------------- | |
import streamlit as st | |
import pandas as pd | |
import requests | |
import re | |
import fitz # PyMuPDF | |
import io | |
import matplotlib.pyplot as plt | |
from PIL import Image | |
from transformers import AutoProcessor, AutoModelForVision2Seq | |
from docling_core.types.doc import DoclingDocument | |
from docling_core.types.doc.document import DocTagsDocument | |
import torch | |
import os | |
from huggingface_hub import InferenceClient | |
# --------------------------------------------------------------------------------------- | |
# Streamlit Page Configuration | |
# --------------------------------------------------------------------------------------- | |
st.set_page_config( | |
page_title="Choose Your Own Adventure (Topic Extraction) PDF Analysis App", | |
page_icon=":bar_chart:", | |
layout="centered", | |
initial_sidebar_state="auto", | |
menu_items={ | |
'Get Help': 'mailto:[email protected]', | |
'About': "This app is built to support PDF analysis" | |
} | |
) | |
# --------------------------------------------------------------------------------------- | |
# Session State Initialization | |
# --------------------------------------------------------------------------------------- | |
for key in ['pdf_processed', 'markdown_texts', 'df']: | |
if key not in st.session_state: | |
st.session_state[key] = False if key == 'pdf_processed' else [] | |
# --------------------------------------------------------------------------------------- | |
# API Configuration | |
# --------------------------------------------------------------------------------------- | |
# Retrieve Hugging Face API key from environment variables | |
hf_api_key = os.getenv('HF_API_KEY') | |
if not hf_api_key: | |
raise ValueError("HF_API_KEY not set in environment variables") | |
# Create the Hugging Face inference client | |
client = InferenceClient(api_key=hf_api_key) | |
# --------------------------------------------------------------------------------------- | |
# Survey Analysis Class | |
# --------------------------------------------------------------------------------------- | |
class SurveyAnalysis: | |
def prepare_llm_input(self, survey_response, topics): | |
topic_descriptions = "\n".join([f"- **{t}**: {d}" for t, d in topics.items()]) | |
return f"""Extract and summarize PDF notes based on topics: | |
{topic_descriptions} | |
Instructions: | |
- Extract exact quotes per topic. | |
- Ignore irrelevant topics. | |
Format: | |
[Topic] | |
- "Exact quote" | |
Meeting Notes: | |
{survey_response} | |
""" | |
def prompt_response_from_hf_llm(self, llm_input): | |
# Define a system prompt to guide the model's responses | |
system_prompt = """ | |
<Persona> An expert Implementation Specialist at Michigan's Multi-Tiered System of Support Technical Assistance Center (MiMTSS TA Center) with deep expertise in SWPBIS, SEL, Structured Literacy, Science of Reading, and family engagement practices.</Persona> | |
<Task> Analyze educational data and provide evidence-based recommendations for improving student outcomes across multiple tiers of support, drawing from established frameworks in behavioral interventions, literacy instruction, and family engagement.</Task> | |
<Context> Operating within Michigan's educational system to support schools in implementing multi-tiered support systems, with access to student metrics data and knowledge of state-specific educational requirements and MTSS frameworks. </Context> | |
<Format> Deliver insights through clear, actionable recommendations supported by data analysis, incorporating technical expertise while maintaining accessibility for educators and administrators at various levels of MTSS implementation.</Format> | |
""" | |
# Generate the refined prompt using Hugging Face API | |
response = client.chat.completions.create( | |
model="meta-llama/Llama-3.1-70B-Instruct", | |
messages=[ | |
{"role": "system", "content": system_prompt}, # Add system prompt here | |
{"role": "user", "content": llm_input} | |
], | |
stream=True, | |
temperature=0.5, | |
max_tokens=1024, | |
top_p=0.7 | |
) | |
# Combine messages if response is streamed | |
response_content = "" | |
for message in response: | |
response_content += message.choices[0].delta.content | |
return response_content.strip() | |
def extract_text(self, response): | |
return response | |
def process_dataframe(self, df, topics): | |
results = [] | |
for _, row in df.iterrows(): | |
llm_input = self.prepare_llm_input(row['Document_Text'], topics) | |
response = self.prompt_response_from_hf_llm(llm_input) | |
notes = self.extract_text(response) | |
results.append({'Document_Text': row['Document_Text'], 'Topic_Summary': notes}) | |
return pd.concat([df.reset_index(drop=True), pd.DataFrame(results)['Topic_Summary']], axis=1) | |
# --------------------------------------------------------------------------------------- | |
# Helper Functions | |
# --------------------------------------------------------------------------------------- | |
def load_smol_docling(): | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
processor = AutoProcessor.from_pretrained("ds4sd/SmolDocling-256M-preview") | |
model = AutoModelForVision2Seq.from_pretrained( | |
"ds4sd/SmolDocling-256M-preview", torch_dtype=torch.float32 | |
).to(device) | |
return model, processor | |
model, processor = load_smol_docling() | |
def convert_pdf_to_images(pdf_file, dpi=150, max_size=1600): | |
images = [] | |
doc = fitz.open(stream=pdf_file.read(), filetype="pdf") | |
for page in doc: | |
pix = page.get_pixmap(dpi=dpi) | |
img = Image.open(io.BytesIO(pix.tobytes("png"))).convert("RGB") | |
img.thumbnail((max_size, max_size), Image.LANCZOS) | |
images.append(img) | |
return images | |
def extract_markdown_from_image(image): | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
prompt = processor.apply_chat_template([{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "Convert this page to docling."}]}], add_generation_prompt=True) | |
inputs = processor(text=prompt, images=[image], return_tensors="pt").to(device) | |
with torch.no_grad(): | |
generated_ids = model.generate(**inputs, max_new_tokens=1024) | |
doctags = processor.batch_decode(generated_ids[:, inputs.input_ids.shape[1]:], skip_special_tokens=False)[0].replace("<end_of_utterance>", "").strip() | |
doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([doctags], [image]) | |
doc = DoclingDocument(name="ExtractedDocument") | |
doc.load_from_doctags(doctags_doc) | |
return doc.export_to_markdown() | |
def extract_excerpts(processed_df): | |
rows = [] | |
for _, r in processed_df.iterrows(): | |
for sec in re.split(r'\n(?=\[)', r['Topic_Summary']): | |
topic_match = re.match(r'\[([^\]]+)\]', sec) | |
if topic_match: | |
topic = topic_match.group(1) | |
excerpts = re.findall(r'- "([^"]+)"', sec) | |
for excerpt in excerpts: | |
rows.append({'Document_Text': r['Document_Text'], 'Topic_Summary': r['Topic_Summary'], 'Excerpt': excerpt, 'Topic': topic}) | |
return pd.DataFrame(rows) | |
# --------------------------------------------------------------------------------------- | |
# Streamlit UI | |
# --------------------------------------------------------------------------------------- | |
st.title("Choose Your Own Adventure (Topic Extraction) PDF Analysis App") | |
uploaded_file = st.file_uploader("Upload PDF file", type=["pdf"]) | |
if uploaded_file and not st.session_state['pdf_processed']: | |
with st.spinner("Processing PDF..."): | |
images = convert_pdf_to_images(uploaded_file) | |
markdown_texts = [extract_markdown_from_image(img) for img in images] | |
st.session_state['df'] = pd.DataFrame({'Document_Text': markdown_texts}) | |
st.session_state['pdf_processed'] = True | |
st.success("PDF processed successfully!") | |
if st.session_state['pdf_processed']: | |
st.markdown("### Extracted Text Preview") | |
st.write(st.session_state['df'].head()) | |
st.markdown("### Enter Topics and Descriptions") | |
num_topics = st.number_input("Number of topics", 1, 10, 1) | |
topics = {} | |
for i in range(num_topics): | |
topic = st.text_input(f"Topic {i+1} Name", key=f"topic_{i}") | |
desc = st.text_area(f"Topic {i+1} Description", key=f"description_{i}") | |
if topic and desc: | |
topics[topic] = desc | |
if st.button("Run Analysis"): | |
if not topics: | |
st.warning("Please enter at least one topic and description.") | |
st.stop() | |
analyzer = SurveyAnalysis() | |
processed_df = analyzer.process_dataframe(st.session_state['df'], topics) | |
extracted_df = extract_excerpts(processed_df) | |
st.markdown("### Extracted Excerpts") | |
st.dataframe(extracted_df) | |
csv = extracted_df.to_csv(index=False) | |
st.download_button("Download CSV", csv, "extracted_notes.csv", "text/csv") | |
if not extracted_df.empty: | |
topic_counts = extracted_df['Topic'].value_counts() | |
fig, ax = plt.subplots() | |
topic_counts.plot.bar(ax=ax, color='#3d9aa1') | |
st.pyplot(fig) | |
else: | |
st.warning("No topics were extracted. Please check the input data and topics.") | |
if not uploaded_file: | |
st.info("Please upload a PDF file to begin.") |