File size: 21,383 Bytes
c13044d 648dea1 56f8447 b8994cd 93edcb3 648dea1 39b1f14 d03227a 39b1f14 cce5718 648dea1 5fed4e8 648dea1 da1f0f6 648dea1 39b1f14 648dea1 39b1f14 0d32d1f 648dea1 39b1f14 648dea1 5fed4e8 da1f0f6 0d32d1f 5fed4e8 0d32d1f da1f0f6 5fed4e8 0d32d1f 5fed4e8 da1f0f6 5fed4e8 648dea1 da1f0f6 0d32d1f 5fed4e8 648dea1 5fed4e8 00f1e2e 39b1f14 648dea1 da1f0f6 648dea1 39b1f14 648dea1 56f8447 39b1f14 56f8447 648dea1 56f8447 648dea1 d03227a 648dea1 39b1f14 d03227a 39b1f14 648dea1 56f8447 39b1f14 56f8447 39b1f14 d03227a 39b1f14 56f8447 648dea1 39b1f14 648dea1 0d32d1f 39b1f14 0d32d1f 39b1f14 0d32d1f 39b1f14 0d32d1f 39b1f14 648dea1 39b1f14 648dea1 39b1f14 648dea1 39b1f14 648dea1 39b1f14 648dea1 39b1f14 648dea1 8275a49 39b1f14 648dea1 39b1f14 648dea1 39b1f14 648dea1 c13044d 648dea1 39b1f14 56f8447 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 |
# # ---------------------------------------------------------------------------------------
# # Imports and Options
# # ---------------------------------------------------------------------------------------
# import streamlit as st
# import pandas as pd
# import requests
# import re
# import fitz # PyMuPDF
# import io
# import matplotlib.pyplot as plt
# from PIL import Image
# from transformers import AutoProcessor, AutoModelForVision2Seq
# from docling_core.types.doc import DoclingDocument
# from docling_core.types.doc.document import DocTagsDocument
# import torch
# import os
# from huggingface_hub import InferenceClient
# # ---------------------------------------------------------------------------------------
# # Streamlit Page Configuration
# # ---------------------------------------------------------------------------------------
# st.set_page_config(
# page_title="Choose Your Own Adventure (Topic Extraction) PDF Analysis App",
# page_icon=":bar_chart:",
# layout="centered",
# initial_sidebar_state="auto",
# menu_items={
# 'Get Help': 'mailto:[email protected]',
# 'About': "This app is built to support PDF analysis"
# }
# )
# # ---------------------------------------------------------------------------------------
# # Session State Initialization
# # ---------------------------------------------------------------------------------------
# for key in ['pdf_processed', 'markdown_texts', 'df']:
# if key not in st.session_state:
# st.session_state[key] = False if key == 'pdf_processed' else []
# # ---------------------------------------------------------------------------------------
# # API Configuration
# # ---------------------------------------------------------------------------------------
# # API_URL = "https://api.stack-ai.com/inference/v0/run/2df89a6c-a4af-4576-880e-27058e498f02/67acad8b0603ba4631db38e7"
# # headers = {
# # 'Authorization': 'Bearer a9e4979e-cdbe-49ea-a193-53562a784805',
# # 'Content-Type': 'application/json'
# # }
# # Retrieve Hugging Face API key from environment variables
# hf_api_key = os.getenv('HF_API_KEY')
# if not hf_api_key:
# raise ValueError("HF_API_KEY not set in environment variables")
# # Create the Hugging Face inference client
# client = InferenceClient(api_key=hf_api_key)
# # # ---------------------------------------------------------------------------------------
# # # Survey Analysis Class
# # # ---------------------------------------------------------------------------------------
# # class SurveyAnalysis:
# # def prepare_llm_input(self, survey_response, topics):
# # topic_descriptions = "\n".join([f"- **{t}**: {d}" for t, d in topics.items()])
# # return f"""Extract and summarize PDF notes based on topics:
# # {topic_descriptions}
# # Instructions:
# # - Extract exact quotes per topic.
# # - Ignore irrelevant topics.
# # Format:
# # [Topic]
# # - "Exact quote"
# # Meeting Notes:
# # {survey_response}
# # """
# # def query_api(self, payload):
# # try:
# # res = requests.post(API_URL, headers=headers, json=payload, timeout=60)
# # res.raise_for_status()
# # return res.json()
# # except requests.exceptions.RequestException as e:
# # st.error(f"API request failed: {e}")
# # return {'outputs': {'out-0': ''}}
# # def extract_meeting_notes(self, response):
# # return response.get('outputs', {}).get('out-0', '')
# # def process_dataframe(self, df, topics):
# # results = []
# # for _, row in df.iterrows():
# # llm_input = self.prepare_llm_input(row['Document_Text'], topics)
# # payload = {"user_id": "user", "in-0": llm_input}
# # response = self.query_api(payload)
# # notes = self.extract_meeting_notes(response)
# # results.append({'Document_Text': row['Document_Text'], 'Topic_Summary': notes})
# # return pd.concat([df.reset_index(drop=True), pd.DataFrame(results)['Topic_Summary']], axis=1)
# # ---------------------------------------------------------------------------------------
# # Survey Analysis Class
# # ---------------------------------------------------------------------------------------
# class SurveyAnalysis:
# def prepare_llm_input(self, survey_response, topics):
# topic_descriptions = "\n".join([f"- **{t}**: {d}" for t, d in topics.items()])
# return f"""Extract and summarize PDF notes based on topics:
# {topic_descriptions}
# Instructions:
# - Extract exact quotes per topic.
# - Ignore irrelevant topics.
# Format:
# [Topic]
# - "Exact quote"
# Meeting Notes:
# {survey_response}
# """
# def prompt_response_from_hf_llm(self, llm_input):
# # Define a system prompt to guide the model's responses
# system_prompt = """
# <Persona> An expert Implementation Specialist at Michigan's Multi-Tiered System of Support Technical Assistance Center (MiMTSS TA Center) with deep expertise in SWPBIS, SEL, Structured Literacy, Science of Reading, and family engagement practices.</Persona>
# <Task> Analyze educational data and provide evidence-based recommendations for improving student outcomes across multiple tiers of support, drawing from established frameworks in behavioral interventions, literacy instruction, and family engagement.</Task>
# <Context> Operating within Michigan's educational system to support schools in implementing multi-tiered support systems, with access to student metrics data and knowledge of state-specific educational requirements and MTSS frameworks. </Context>
# <Format> Deliver insights through clear, actionable recommendations supported by data analysis, incorporating technical expertise while maintaining accessibility for educators and administrators at various levels of MTSS implementation.</Format>
# """
# # Generate the refined prompt using Hugging Face API
# response = client.chat.completions.create(
# model="meta-llama/Llama-3.1-70B-Instruct",
# messages=[
# {"role": "system", "content": system_prompt}, # Add system prompt here
# {"role": "user", "content": llm_input}
# ],
# stream=True,
# temperature=0.5,
# max_tokens=1024,
# top_p=0.7
# )
# # Combine messages if response is streamed
# response_content = ""
# for message in response:
# response_content += message.choices[0].delta.content
# return response_content.strip()
# def extract_text(self, response):
# return response
# def process_dataframe(self, df, topics):
# results = []
# for _, row in df.iterrows():
# llm_input = self.prepare_llm_input(row['Document_Text'], topics)
# response = self.prompt_response_from_hf_llm(llm_input)
# notes = self.extract_text(response)
# results.append({'Document_Text': row['Document_Text'], 'Topic_Summary': notes})
# return pd.concat([df.reset_index(drop=True), pd.DataFrame(results)['Topic_Summary']], axis=1)
# # ---------------------------------------------------------------------------------------
# # Helper Functions
# # ---------------------------------------------------------------------------------------
# @st.cache_resource
# def load_smol_docling():
# device = "cuda" if torch.cuda.is_available() else "cpu"
# processor = AutoProcessor.from_pretrained("ds4sd/SmolDocling-256M-preview")
# model = AutoModelForVision2Seq.from_pretrained(
# "ds4sd/SmolDocling-256M-preview", torch_dtype=torch.float32
# ).to(device)
# return model, processor
# model, processor = load_smol_docling()
# def convert_pdf_to_images(pdf_file, dpi=150, max_size=1600):
# images = []
# doc = fitz.open(stream=pdf_file.read(), filetype="pdf")
# for page in doc:
# pix = page.get_pixmap(dpi=dpi)
# img = Image.open(io.BytesIO(pix.tobytes("png"))).convert("RGB")
# img.thumbnail((max_size, max_size), Image.LANCZOS)
# images.append(img)
# return images
# def extract_markdown_from_image(image):
# device = "cuda" if torch.cuda.is_available() else "cpu"
# prompt = processor.apply_chat_template([{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "Convert this page to docling."}]}], add_generation_prompt=True)
# inputs = processor(text=prompt, images=[image], return_tensors="pt").to(device)
# with torch.no_grad():
# generated_ids = model.generate(**inputs, max_new_tokens=1024)
# doctags = processor.batch_decode(generated_ids[:, inputs.input_ids.shape[1]:], skip_special_tokens=False)[0].replace("<end_of_utterance>", "").strip()
# doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([doctags], [image])
# doc = DoclingDocument(name="ExtractedDocument")
# doc.load_from_doctags(doctags_doc)
# return doc.export_to_markdown()
# def extract_excerpts(processed_df):
# rows = []
# for _, r in processed_df.iterrows():
# for sec in re.split(r'\n(?=\[)', r['Topic_Summary']):
# topic_match = re.match(r'\[([^\]]+)\]', sec)
# if topic_match:
# topic = topic_match.group(1)
# excerpts = re.findall(r'- "([^"]+)"', sec)
# for excerpt in excerpts:
# rows.append({'Document_Text': r['Document_Text'], 'Topic_Summary': r['Topic_Summary'], 'Excerpt': excerpt, 'Topic': topic})
# return pd.DataFrame(rows)
# # ---------------------------------------------------------------------------------------
# # Streamlit UI
# # ---------------------------------------------------------------------------------------
# st.title("Choose Your Own Adventure (Topic Extraction) PDF Analysis App")
# uploaded_file = st.file_uploader("Upload PDF file", type=["pdf"])
# if uploaded_file and not st.session_state['pdf_processed']:
# with st.spinner("Processing PDF..."):
# images = convert_pdf_to_images(uploaded_file)
# markdown_texts = [extract_markdown_from_image(img) for img in images]
# st.session_state['df'] = pd.DataFrame({'Document_Text': markdown_texts})
# st.session_state['pdf_processed'] = True
# st.success("PDF processed successfully!")
# if st.session_state['pdf_processed']:
# st.markdown("### Extracted Text Preview")
# st.write(st.session_state['df'].head())
# st.markdown("### Enter Topics and Descriptions")
# num_topics = st.number_input("Number of topics", 1, 10, 1)
# topics = {}
# for i in range(num_topics):
# topic = st.text_input(f"Topic {i+1} Name", key=f"topic_{i}")
# desc = st.text_area(f"Topic {i+1} Description", key=f"description_{i}")
# if topic and desc:
# topics[topic] = desc
# if st.button("Run Analysis"):
# if not topics:
# st.warning("Please enter at least one topic and description.")
# st.stop()
# analyzer = SurveyAnalysis()
# processed_df = analyzer.process_dataframe(st.session_state['df'], topics)
# extracted_df = extract_excerpts(processed_df)
# st.markdown("### Extracted Excerpts")
# st.dataframe(extracted_df)
# csv = extracted_df.to_csv(index=False)
# st.download_button("Download CSV", csv, "extracted_notes.csv", "text/csv")
# topic_counts = extracted_df['Topic'].value_counts()
# fig, ax = plt.subplots()
# topic_counts.plot.bar(ax=ax, color='#3d9aa1')
# st.pyplot(fig)
# if not uploaded_file:
# st.info("Please upload a PDF file to begin.")
# ---------------------------------------------------------------------------------------
# Imports and Options
# ---------------------------------------------------------------------------------------
import streamlit as st
import pandas as pd
import requests
import re
import fitz # PyMuPDF
import io
import matplotlib.pyplot as plt
from PIL import Image
from transformers import AutoProcessor, AutoModelForVision2Seq
from docling_core.types.doc import DoclingDocument
from docling_core.types.doc.document import DocTagsDocument
import torch
import os
from huggingface_hub import InferenceClient
# ---------------------------------------------------------------------------------------
# Streamlit Page Configuration
# ---------------------------------------------------------------------------------------
st.set_page_config(
page_title="Choose Your Own Adventure (Topic Extraction) PDF Analysis App",
page_icon=":bar_chart:",
layout="centered",
initial_sidebar_state="auto",
menu_items={
'Get Help': 'mailto:[email protected]',
'About': "This app is built to support PDF analysis"
}
)
# ---------------------------------------------------------------------------------------
# Session State Initialization
# ---------------------------------------------------------------------------------------
for key in ['pdf_processed', 'markdown_texts', 'df']:
if key not in st.session_state:
st.session_state[key] = False if key == 'pdf_processed' else []
# ---------------------------------------------------------------------------------------
# API Configuration
# ---------------------------------------------------------------------------------------
hf_api_key = os.getenv('HF_API_KEY')
if not hf_api_key:
raise ValueError("HF_API_KEY not set in environment variables")
client = InferenceClient(api_key=hf_api_key)
# ---------------------------------------------------------------------------------------
# Survey Analysis Class
# ---------------------------------------------------------------------------------------
class AIAnalysis:
def __init__(self, client):
self.client = client
def prepare_llm_input(self, survey_response, topics):
topic_descriptions = "\n".join([f"- **{t}**: {d}" for t, d in topics.items()])
return f"""Extract and summarize PDF notes based on topics:
{topic_descriptions}
Instructions:
- Extract exact quotes per topic.
- Ignore irrelevant topics.
- Strictly follow this format:
[Topic]
- "Exact quote"
Meeting Notes:
{survey_response}
"""
def prompt_response_from_hf_llm(self, llm_input):
system_prompt = """
You are an expert assistant tasked with extracting exact quotes from provided meeting notes based on given topics.
Instructions:
- Only extract exact quotes relevant to provided topics.
- Ignore irrelevant content.
- Strictly follow this format:
[Topic]
- "Exact quote"
"""
response = self.client.chat.completions.create(
model="meta-llama/Llama-3.1-70B-Instruct",
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": llm_input}
],
stream=True,
temperature=0.5,
max_tokens=1024,
top_p=0.7
)
response_content = ""
for message in response:
# Correctly handle streaming response
response_content += message.choices[0].delta.content
print("Full AI Response:", response_content) # Debugging
return response_content.strip()
def extract_text(self, response):
return response
def process_dataframe(self, df, topics):
results = []
for _, row in df.iterrows():
llm_input = self.prepare_llm_input(row['Document_Text'], topics)
response = self.prompt_response_from_hf_llm(llm_input)
notes = self.extract_text(response)
results.append({'Document_Text': row['Document_Text'], 'Topic_Summary': notes})
return pd.concat([df.reset_index(drop=True), pd.DataFrame(results)['Topic_Summary']], axis=1)
def process_dataframe(self, df, topics):
results = []
for _, row in df.iterrows():
llm_input = self.prepare_llm_input(row['Document_Text'], topics)
response = self.prompt_response_from_hf_llm(llm_input)
notes = self.extract_text(response)
results.append({'Document_Text': row['Document_Text'], 'Topic_Summary': notes})
return pd.concat([df.reset_index(drop=True), pd.DataFrame(results)['Topic_Summary']], axis=1)
# ---------------------------------------------------------------------------------------
# Helper Functions
# ---------------------------------------------------------------------------------------
@st.cache_resource
def load_smol_docling():
device = "cuda" if torch.cuda.is_available() else "cpu"
processor = AutoProcessor.from_pretrained("ds4sd/SmolDocling-256M-preview")
model = AutoModelForVision2Seq.from_pretrained(
"ds4sd/SmolDocling-256M-preview", torch_dtype=torch.float32
).to(device)
return model, processor
model, processor = load_smol_docling()
def convert_pdf_to_images(pdf_file, dpi=150, max_size=1600):
images = []
doc = fitz.open(stream=pdf_file.read(), filetype="pdf")
for page in doc:
pix = page.get_pixmap(dpi=dpi)
img = Image.open(io.BytesIO(pix.tobytes("png"))).convert("RGB")
img.thumbnail((max_size, max_size), Image.LANCZOS)
images.append(img)
return images
def extract_markdown_from_image(image):
device = "cuda" if torch.cuda.is_available() else "cpu"
prompt = processor.apply_chat_template([{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "Convert this page to docling."}]}], add_generation_prompt=True)
inputs = processor(text=prompt, images=[image], return_tensors="pt").to(device)
with torch.no_grad():
generated_ids = model.generate(**inputs, max_new_tokens=1024)
doctags = processor.batch_decode(generated_ids[:, inputs.input_ids.shape[1]:], skip_special_tokens=False)[0].replace("<end_of_utterance>", "").strip()
doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([doctags], [image])
doc = DoclingDocument(name="ExtractedDocument")
doc.load_from_doctags(doctags_doc)
return doc.export_to_markdown()
# Revised extract_excerpts function with improved robustness
def extract_excerpts(processed_df):
rows = []
for _, r in processed_df.iterrows():
sections = re.split(r'\n(?=(?:\*\*|\[)?[A-Za-z/ ]+(?:\*\*|\])?\n- )', r['Topic_Summary'])
for sec in sections:
topic_match = re.match(r'(?:\*\*|\[)?([A-Za-z/ ]+)(?:\*\*|\])?', sec.strip())
if topic_match:
topic = topic_match.group(1).strip()
excerpts = re.findall(r'- "?([^"\n]+)"?', sec)
for excerpt in excerpts:
rows.append({
'Document_Text': r['Document_Text'],
'Topic_Summary': r['Topic_Summary'],
'Excerpt': excerpt.strip(),
'Topic': topic
})
print("Extracted Rows:", rows) # Debugging
return pd.DataFrame(rows)
# ---------------------------------------------------------------------------------------
# Streamlit UI
# ---------------------------------------------------------------------------------------
st.title("Choose Your Own Adventure (Topic Extraction) PDF Analysis App")
uploaded_file = st.file_uploader("Upload PDF file", type=["pdf"])
if uploaded_file and not st.session_state['pdf_processed']:
with st.spinner("Processing PDF..."):
images = convert_pdf_to_images(uploaded_file)
markdown_texts = [extract_markdown_from_image(img) for img in images]
st.session_state['df'] = pd.DataFrame({'Document_Text': markdown_texts})
st.session_state['pdf_processed'] = True
st.success("PDF processed successfully!")
if st.session_state['pdf_processed']:
st.markdown("### Extracted Text Preview")
st.write(st.session_state['df'].head())
st.markdown("### Enter Topics and Descriptions")
num_topics = st.number_input("Number of topics", 1, 10, 1)
topics = {}
for i in range(num_topics):
topic = st.text_input(f"Topic {i+1} Name", key=f"topic_{i}")
desc = st.text_area(f"Topic {i+1} Description", key=f"description_{i}")
if topic and desc:
topics[topic] = desc
if st.button("Run Analysis"):
if not topics:
st.warning("Please enter at least one topic and description.")
st.stop()
analyzer = AIAnalysis(client)
processed_df = analyzer.process_dataframe(st.session_state['df'], topics)
extracted_df = extract_excerpts(processed_df)
st.markdown("### Extracted Excerpts")
st.dataframe(extracted_df)
csv = extracted_df.to_csv(index=False)
st.download_button("Download CSV", csv, "extracted_notes.csv", "text/csv")
if not extracted_df.empty:
topic_counts = extracted_df['Topic'].value_counts()
fig, ax = plt.subplots()
topic_counts.plot.bar(ax=ax, color='#3d9aa1')
st.pyplot(fig)
else:
st.warning("No topics were extracted. Please check the input data and topics.")
if not uploaded_file:
st.info("Please upload a PDF file to begin.") |