File size: 21,383 Bytes
c13044d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
648dea1
 
 
 
 
 
 
 
 
 
 
56f8447
 
 
 
b8994cd
93edcb3
648dea1
39b1f14
 
 
 
 
 
 
 
 
 
 
 
 
d03227a
39b1f14
 
 
 
 
 
cce5718
648dea1
 
 
5fed4e8
 
 
 
 
 
648dea1
 
 
da1f0f6
 
 
 
648dea1
39b1f14
 
648dea1
 
39b1f14
 
 
0d32d1f
648dea1
 
 
 
39b1f14
648dea1
 
 
5fed4e8
 
da1f0f6
0d32d1f
 
 
 
 
 
 
 
5fed4e8
0d32d1f
da1f0f6
5fed4e8
 
0d32d1f
5fed4e8
 
da1f0f6
5fed4e8
 
 
 
648dea1
da1f0f6
 
 
 
 
0d32d1f
5fed4e8
 
 
 
648dea1
 
 
 
 
5fed4e8
00f1e2e
39b1f14
 
648dea1
da1f0f6
 
 
 
 
 
 
 
 
648dea1
39b1f14
648dea1
 
 
56f8447
 
 
39b1f14
56f8447
 
648dea1
56f8447
648dea1
d03227a
648dea1
 
39b1f14
d03227a
39b1f14
 
 
648dea1
 
 
56f8447
39b1f14
56f8447
39b1f14
d03227a
39b1f14
56f8447
648dea1
 
39b1f14
648dea1
0d32d1f
39b1f14
 
 
0d32d1f
 
 
39b1f14
0d32d1f
 
39b1f14
0d32d1f
 
 
 
 
 
 
39b1f14
 
 
648dea1
39b1f14
648dea1
 
 
 
39b1f14
 
 
 
 
 
 
648dea1
39b1f14
 
 
648dea1
 
39b1f14
648dea1
 
 
39b1f14
 
 
648dea1
 
 
 
 
 
8275a49
39b1f14
 
648dea1
39b1f14
 
648dea1
39b1f14
 
648dea1
c13044d
 
 
 
 
 
 
648dea1
39b1f14
56f8447
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
# # ---------------------------------------------------------------------------------------
# # Imports and Options
# # ---------------------------------------------------------------------------------------
# import streamlit as st
# import pandas as pd
# import requests
# import re
# import fitz  # PyMuPDF
# import io
# import matplotlib.pyplot as plt
# from PIL import Image
# from transformers import AutoProcessor, AutoModelForVision2Seq
# from docling_core.types.doc import DoclingDocument
# from docling_core.types.doc.document import DocTagsDocument
# import torch
# import os
# from huggingface_hub import InferenceClient

# # ---------------------------------------------------------------------------------------
# # Streamlit Page Configuration
# # ---------------------------------------------------------------------------------------
# st.set_page_config(
#     page_title="Choose Your Own Adventure (Topic Extraction) PDF Analysis App",
#     page_icon=":bar_chart:",
#     layout="centered",
#     initial_sidebar_state="auto",
#     menu_items={
#         'Get Help': 'mailto:[email protected]',
#         'About': "This app is built to support PDF analysis"
#     }
# )

# # ---------------------------------------------------------------------------------------
# # Session State Initialization
# # ---------------------------------------------------------------------------------------
# for key in ['pdf_processed', 'markdown_texts', 'df']:
#     if key not in st.session_state:
#         st.session_state[key] = False if key == 'pdf_processed' else []

# # ---------------------------------------------------------------------------------------
# # API Configuration
# # ---------------------------------------------------------------------------------------
# # API_URL = "https://api.stack-ai.com/inference/v0/run/2df89a6c-a4af-4576-880e-27058e498f02/67acad8b0603ba4631db38e7"
# # headers = {
# #     'Authorization': 'Bearer a9e4979e-cdbe-49ea-a193-53562a784805',
# #     'Content-Type': 'application/json'
# # }

# # Retrieve Hugging Face API key from environment variables
# hf_api_key = os.getenv('HF_API_KEY')
# if not hf_api_key:
#     raise ValueError("HF_API_KEY not set in environment variables")

# # Create the Hugging Face inference client
# client = InferenceClient(api_key=hf_api_key)

# # # ---------------------------------------------------------------------------------------
# # # Survey Analysis Class
# # # ---------------------------------------------------------------------------------------
# # class SurveyAnalysis:
# #     def prepare_llm_input(self, survey_response, topics):
# #         topic_descriptions = "\n".join([f"- **{t}**: {d}" for t, d in topics.items()])
# #         return f"""Extract and summarize PDF notes based on topics:
# # {topic_descriptions}

# # Instructions:
# # - Extract exact quotes per topic.
# # - Ignore irrelevant topics.

# # Format:
# # [Topic]
# # - "Exact quote"

# # Meeting Notes:
# # {survey_response}
# # """

# #     def query_api(self, payload):
# #         try:
# #             res = requests.post(API_URL, headers=headers, json=payload, timeout=60)
# #             res.raise_for_status()
# #             return res.json()
# #         except requests.exceptions.RequestException as e:
# #             st.error(f"API request failed: {e}")
# #             return {'outputs': {'out-0': ''}}

# #     def extract_meeting_notes(self, response):
# #         return response.get('outputs', {}).get('out-0', '')

# #     def process_dataframe(self, df, topics):
# #         results = []
# #         for _, row in df.iterrows():
# #             llm_input = self.prepare_llm_input(row['Document_Text'], topics)
# #             payload = {"user_id": "user", "in-0": llm_input}
# #             response = self.query_api(payload)
# #             notes = self.extract_meeting_notes(response)
# #             results.append({'Document_Text': row['Document_Text'], 'Topic_Summary': notes})
# #         return pd.concat([df.reset_index(drop=True), pd.DataFrame(results)['Topic_Summary']], axis=1)

# # ---------------------------------------------------------------------------------------
# # Survey Analysis Class
# # ---------------------------------------------------------------------------------------
# class SurveyAnalysis:
#     def prepare_llm_input(self, survey_response, topics):
#         topic_descriptions = "\n".join([f"- **{t}**: {d}" for t, d in topics.items()])
#         return f"""Extract and summarize PDF notes based on topics:
# {topic_descriptions}

# Instructions:
# - Extract exact quotes per topic.
# - Ignore irrelevant topics.

# Format:
# [Topic]
# - "Exact quote"

# Meeting Notes:
# {survey_response}
# """

#     def prompt_response_from_hf_llm(self, llm_input):
#         # Define a system prompt to guide the model's responses
#         system_prompt = """
#         <Persona> An expert Implementation Specialist at Michigan's Multi-Tiered System of Support Technical Assistance Center (MiMTSS TA Center) with deep expertise in SWPBIS, SEL, Structured Literacy, Science of Reading, and family engagement practices.</Persona> 
#         <Task> Analyze educational data and provide evidence-based recommendations for improving student outcomes across multiple tiers of support, drawing from established frameworks in behavioral interventions, literacy instruction, and family engagement.</Task> 
#         <Context> Operating within Michigan's educational system to support schools in implementing multi-tiered support systems, with access to student metrics data and knowledge of state-specific educational requirements and MTSS frameworks. </Context> 
#         <Format> Deliver insights through clear, actionable recommendations supported by data analysis, incorporating technical expertise while maintaining accessibility for educators and administrators at various levels of MTSS implementation.</Format>
#         """
        
#         # Generate the refined prompt using Hugging Face API
#         response = client.chat.completions.create(
#             model="meta-llama/Llama-3.1-70B-Instruct",
#             messages=[
#                 {"role": "system", "content": system_prompt},  # Add system prompt here
#                 {"role": "user", "content": llm_input}
#             ],
#             stream=True,
#             temperature=0.5,
#             max_tokens=1024,
#             top_p=0.7
#         )
        
#         # Combine messages if response is streamed
#         response_content = ""
#         for message in response:
#             response_content += message.choices[0].delta.content

#         return response_content.strip()

#     def extract_text(self, response):
#         return response

#     def process_dataframe(self, df, topics):
#         results = []
#         for _, row in df.iterrows():
#             llm_input = self.prepare_llm_input(row['Document_Text'], topics)
#             response = self.prompt_response_from_hf_llm(llm_input)
#             notes = self.extract_text(response)
#             results.append({'Document_Text': row['Document_Text'], 'Topic_Summary': notes})
#         return pd.concat([df.reset_index(drop=True), pd.DataFrame(results)['Topic_Summary']], axis=1)

# # ---------------------------------------------------------------------------------------
# # Helper Functions
# # ---------------------------------------------------------------------------------------
# @st.cache_resource
# def load_smol_docling():
#     device = "cuda" if torch.cuda.is_available() else "cpu"
#     processor = AutoProcessor.from_pretrained("ds4sd/SmolDocling-256M-preview")
#     model = AutoModelForVision2Seq.from_pretrained(
#         "ds4sd/SmolDocling-256M-preview", torch_dtype=torch.float32
#     ).to(device)
#     return model, processor

# model, processor = load_smol_docling()

# def convert_pdf_to_images(pdf_file, dpi=150, max_size=1600):
#     images = []
#     doc = fitz.open(stream=pdf_file.read(), filetype="pdf")
#     for page in doc:
#         pix = page.get_pixmap(dpi=dpi)
#         img = Image.open(io.BytesIO(pix.tobytes("png"))).convert("RGB")
#         img.thumbnail((max_size, max_size), Image.LANCZOS)
#         images.append(img)
#     return images

# def extract_markdown_from_image(image):
#     device = "cuda" if torch.cuda.is_available() else "cpu"
#     prompt = processor.apply_chat_template([{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "Convert this page to docling."}]}], add_generation_prompt=True)
#     inputs = processor(text=prompt, images=[image], return_tensors="pt").to(device)
#     with torch.no_grad():
#         generated_ids = model.generate(**inputs, max_new_tokens=1024)
#     doctags = processor.batch_decode(generated_ids[:, inputs.input_ids.shape[1]:], skip_special_tokens=False)[0].replace("<end_of_utterance>", "").strip()
#     doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([doctags], [image])
#     doc = DoclingDocument(name="ExtractedDocument")
#     doc.load_from_doctags(doctags_doc)
#     return doc.export_to_markdown()

# def extract_excerpts(processed_df):
#     rows = []
#     for _, r in processed_df.iterrows():
#         for sec in re.split(r'\n(?=\[)', r['Topic_Summary']):
#             topic_match = re.match(r'\[([^\]]+)\]', sec)
#             if topic_match:
#                 topic = topic_match.group(1)
#                 excerpts = re.findall(r'- "([^"]+)"', sec)
#                 for excerpt in excerpts:
#                     rows.append({'Document_Text': r['Document_Text'], 'Topic_Summary': r['Topic_Summary'], 'Excerpt': excerpt, 'Topic': topic})
#     return pd.DataFrame(rows)

# # ---------------------------------------------------------------------------------------
# # Streamlit UI
# # ---------------------------------------------------------------------------------------
# st.title("Choose Your Own Adventure (Topic Extraction) PDF Analysis App")

# uploaded_file = st.file_uploader("Upload PDF file", type=["pdf"])

# if uploaded_file and not st.session_state['pdf_processed']:
#     with st.spinner("Processing PDF..."):
#         images = convert_pdf_to_images(uploaded_file)
#         markdown_texts = [extract_markdown_from_image(img) for img in images]
#         st.session_state['df'] = pd.DataFrame({'Document_Text': markdown_texts})
#         st.session_state['pdf_processed'] = True
#     st.success("PDF processed successfully!")

# if st.session_state['pdf_processed']:
#     st.markdown("### Extracted Text Preview")
#     st.write(st.session_state['df'].head())

#     st.markdown("### Enter Topics and Descriptions")
#     num_topics = st.number_input("Number of topics", 1, 10, 1)
#     topics = {}
#     for i in range(num_topics):
#         topic = st.text_input(f"Topic {i+1} Name", key=f"topic_{i}")
#         desc = st.text_area(f"Topic {i+1} Description", key=f"description_{i}")
#         if topic and desc:
#             topics[topic] = desc

#     if st.button("Run Analysis"):
#         if not topics:
#             st.warning("Please enter at least one topic and description.")
#             st.stop()

#         analyzer = SurveyAnalysis()
#         processed_df = analyzer.process_dataframe(st.session_state['df'], topics)
#         extracted_df = extract_excerpts(processed_df)

#         st.markdown("### Extracted Excerpts")
#         st.dataframe(extracted_df)

#         csv = extracted_df.to_csv(index=False)
#         st.download_button("Download CSV", csv, "extracted_notes.csv", "text/csv")

#         topic_counts = extracted_df['Topic'].value_counts()
#         fig, ax = plt.subplots()
#         topic_counts.plot.bar(ax=ax, color='#3d9aa1')
#         st.pyplot(fig)

# if not uploaded_file:
#     st.info("Please upload a PDF file to begin.")


# ---------------------------------------------------------------------------------------
# Imports and Options
# ---------------------------------------------------------------------------------------
import streamlit as st
import pandas as pd
import requests
import re
import fitz  # PyMuPDF
import io
import matplotlib.pyplot as plt
from PIL import Image
from transformers import AutoProcessor, AutoModelForVision2Seq
from docling_core.types.doc import DoclingDocument
from docling_core.types.doc.document import DocTagsDocument
import torch
import os
from huggingface_hub import InferenceClient

# ---------------------------------------------------------------------------------------
# Streamlit Page Configuration
# ---------------------------------------------------------------------------------------
st.set_page_config(
    page_title="Choose Your Own Adventure (Topic Extraction) PDF Analysis App",
    page_icon=":bar_chart:",
    layout="centered",
    initial_sidebar_state="auto",
    menu_items={
        'Get Help': 'mailto:[email protected]',
        'About': "This app is built to support PDF analysis"
    }
)

# ---------------------------------------------------------------------------------------
# Session State Initialization
# ---------------------------------------------------------------------------------------
for key in ['pdf_processed', 'markdown_texts', 'df']:
    if key not in st.session_state:
        st.session_state[key] = False if key == 'pdf_processed' else []

# ---------------------------------------------------------------------------------------
# API Configuration
# ---------------------------------------------------------------------------------------
hf_api_key = os.getenv('HF_API_KEY')
if not hf_api_key:
    raise ValueError("HF_API_KEY not set in environment variables")

client = InferenceClient(api_key=hf_api_key)

# ---------------------------------------------------------------------------------------
# Survey Analysis Class
# ---------------------------------------------------------------------------------------
class AIAnalysis:
    def __init__(self, client):
        self.client = client

    def prepare_llm_input(self, survey_response, topics):
        topic_descriptions = "\n".join([f"- **{t}**: {d}" for t, d in topics.items()])
        return f"""Extract and summarize PDF notes based on topics:
{topic_descriptions}

Instructions:
- Extract exact quotes per topic.
- Ignore irrelevant topics.
- Strictly follow this format:

[Topic]
- "Exact quote"

Meeting Notes:
{survey_response}
"""

    def prompt_response_from_hf_llm(self, llm_input):
        system_prompt = """
        You are an expert assistant tasked with extracting exact quotes from provided meeting notes based on given topics.

        Instructions:
        - Only extract exact quotes relevant to provided topics.
        - Ignore irrelevant content.
        - Strictly follow this format:

        [Topic]
        - "Exact quote"
        """

        response = self.client.chat.completions.create(
            model="meta-llama/Llama-3.1-70B-Instruct",
            messages=[
                {"role": "system", "content": system_prompt},
                {"role": "user", "content": llm_input}
            ],
            stream=True,
            temperature=0.5,
            max_tokens=1024,
            top_p=0.7
        )

        response_content = ""
        for message in response:
            # Correctly handle streaming response
            response_content += message.choices[0].delta.content

        print("Full AI Response:", response_content)  # Debugging
        return response_content.strip()

    def extract_text(self, response):
        return response

    def process_dataframe(self, df, topics):
        results = []
        for _, row in df.iterrows():
            llm_input = self.prepare_llm_input(row['Document_Text'], topics)
            response = self.prompt_response_from_hf_llm(llm_input)
            notes = self.extract_text(response)
            results.append({'Document_Text': row['Document_Text'], 'Topic_Summary': notes})
        return pd.concat([df.reset_index(drop=True), pd.DataFrame(results)['Topic_Summary']], axis=1)

    def process_dataframe(self, df, topics):
        results = []
        for _, row in df.iterrows():
            llm_input = self.prepare_llm_input(row['Document_Text'], topics)
            response = self.prompt_response_from_hf_llm(llm_input)
            notes = self.extract_text(response)
            results.append({'Document_Text': row['Document_Text'], 'Topic_Summary': notes})
        return pd.concat([df.reset_index(drop=True), pd.DataFrame(results)['Topic_Summary']], axis=1)

# ---------------------------------------------------------------------------------------
# Helper Functions
# ---------------------------------------------------------------------------------------
@st.cache_resource
def load_smol_docling():
    device = "cuda" if torch.cuda.is_available() else "cpu"
    processor = AutoProcessor.from_pretrained("ds4sd/SmolDocling-256M-preview")
    model = AutoModelForVision2Seq.from_pretrained(
        "ds4sd/SmolDocling-256M-preview", torch_dtype=torch.float32
    ).to(device)
    return model, processor

model, processor = load_smol_docling()

def convert_pdf_to_images(pdf_file, dpi=150, max_size=1600):
    images = []
    doc = fitz.open(stream=pdf_file.read(), filetype="pdf")
    for page in doc:
        pix = page.get_pixmap(dpi=dpi)
        img = Image.open(io.BytesIO(pix.tobytes("png"))).convert("RGB")
        img.thumbnail((max_size, max_size), Image.LANCZOS)
        images.append(img)
    return images

def extract_markdown_from_image(image):
    device = "cuda" if torch.cuda.is_available() else "cpu"
    prompt = processor.apply_chat_template([{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "Convert this page to docling."}]}], add_generation_prompt=True)
    inputs = processor(text=prompt, images=[image], return_tensors="pt").to(device)
    with torch.no_grad():
        generated_ids = model.generate(**inputs, max_new_tokens=1024)
    doctags = processor.batch_decode(generated_ids[:, inputs.input_ids.shape[1]:], skip_special_tokens=False)[0].replace("<end_of_utterance>", "").strip()
    doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([doctags], [image])
    doc = DoclingDocument(name="ExtractedDocument")
    doc.load_from_doctags(doctags_doc)
    return doc.export_to_markdown()

# Revised extract_excerpts function with improved robustness
def extract_excerpts(processed_df):
    rows = []
    for _, r in processed_df.iterrows():
        sections = re.split(r'\n(?=(?:\*\*|\[)?[A-Za-z/ ]+(?:\*\*|\])?\n- )', r['Topic_Summary'])
        for sec in sections:
            topic_match = re.match(r'(?:\*\*|\[)?([A-Za-z/ ]+)(?:\*\*|\])?', sec.strip())
            if topic_match:
                topic = topic_match.group(1).strip()
                excerpts = re.findall(r'- "?([^"\n]+)"?', sec)
                for excerpt in excerpts:
                    rows.append({
                        'Document_Text': r['Document_Text'],
                        'Topic_Summary': r['Topic_Summary'],
                        'Excerpt': excerpt.strip(),
                        'Topic': topic
                    })
    print("Extracted Rows:", rows)  # Debugging
    return pd.DataFrame(rows)

# ---------------------------------------------------------------------------------------
# Streamlit UI
# ---------------------------------------------------------------------------------------
st.title("Choose Your Own Adventure (Topic Extraction) PDF Analysis App")

uploaded_file = st.file_uploader("Upload PDF file", type=["pdf"])

if uploaded_file and not st.session_state['pdf_processed']:
    with st.spinner("Processing PDF..."):
        images = convert_pdf_to_images(uploaded_file)
        markdown_texts = [extract_markdown_from_image(img) for img in images]
        st.session_state['df'] = pd.DataFrame({'Document_Text': markdown_texts})
        st.session_state['pdf_processed'] = True
    st.success("PDF processed successfully!")

if st.session_state['pdf_processed']:
    st.markdown("### Extracted Text Preview")
    st.write(st.session_state['df'].head())

    st.markdown("### Enter Topics and Descriptions")
    num_topics = st.number_input("Number of topics", 1, 10, 1)
    topics = {}
    for i in range(num_topics):
        topic = st.text_input(f"Topic {i+1} Name", key=f"topic_{i}")
        desc = st.text_area(f"Topic {i+1} Description", key=f"description_{i}")
        if topic and desc:
            topics[topic] = desc

    if st.button("Run Analysis"):
        if not topics:
            st.warning("Please enter at least one topic and description.")
            st.stop()

        analyzer = AIAnalysis(client)
        processed_df = analyzer.process_dataframe(st.session_state['df'], topics)
        extracted_df = extract_excerpts(processed_df)

        st.markdown("### Extracted Excerpts")
        st.dataframe(extracted_df)

        csv = extracted_df.to_csv(index=False)
        st.download_button("Download CSV", csv, "extracted_notes.csv", "text/csv")

        if not extracted_df.empty:
            topic_counts = extracted_df['Topic'].value_counts()
            fig, ax = plt.subplots()
            topic_counts.plot.bar(ax=ax, color='#3d9aa1')
            st.pyplot(fig)
        else:
            st.warning("No topics were extracted. Please check the input data and topics.")

if not uploaded_file:
    st.info("Please upload a PDF file to begin.")