File size: 11,410 Bytes
648dea1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
# ---------------------------------------------------------------------------------------
# Imports and Options
# ---------------------------------------------------------------------------------------
import streamlit as st
import pandas as pd
import requests
import re
import fitz # PyMuPDF
import io
import matplotlib.pyplot as plt
from PIL import Image
from mlx_vlm import load, generate
from mlx_vlm.prompt_utils import apply_chat_template
from mlx_vlm.utils import load_config, stream_generate
from docling_core.types.doc.document import DocTagsDocument, DoclingDocument
# Set Streamlit to wide mode
# st.set_page_config(layout="wide")
# ---------------------------------------------------------------------------------------
# API Configuration
# ---------------------------------------------------------------------------------------
API_URL = "https://api.stack-ai.com/inference/v0/run/2df89a6c-a4af-4576-880e-27058e498f02/67acad8b0603ba4631db38e7"
headers = {
'Authorization': 'Bearer a9e4979e-cdbe-49ea-a193-53562a784805',
'Content-Type': 'application/json'
}
# ---------------------------------------------------------------------------------------
# Survey Analysis Class
# ---------------------------------------------------------------------------------------
class SurveyAnalysis:
def __init__(self, api_key=None):
self.api_key = api_key
def prepare_llm_input(self, survey_response, topics):
# Create topic description string from user input
topic_descriptions = "\n".join([f"- **{topic}**: {description}" for topic, description in topics.items()])
llm_input = f"""
Your task is to review PDF docling and extract information related to the provided topics. Here are the topic descriptions:
{topic_descriptions}
**Instructions:**
- Extract and summarize the PDF focusing only on the provided topics.
- If a topic is not mentioned in the notes, it should not be included in the Topic_Summary.
- Use **exact quotes** from the original text for each point in your Topic_Summary.
- Exclude erroneous content.
- Do not add additional explanations or instructions.
**Format your response as follows:**
[Topic]
- "Exact quote"
- "Exact quote"
- "Exact quote"
**Meeting Notes:**
{survey_response}
"""
return llm_input
def query_api(self, payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
def extract_meeting_notes(self, response):
output = response.get('outputs', {}).get('out-0', '')
return output
def process_dataframe(self, df, topics):
results = []
for _, row in df.iterrows():
llm_input = self.prepare_llm_input(row['Document_Text'], topics)
payload = {
"user_id": "<USER or Conversation ID>",
"in-0": llm_input
}
response = self.query_api(payload)
meeting_notes = self.extract_meeting_notes(response)
results.append({
'Document_Text': row['Document_Text'],
'Topic_Summary': meeting_notes
})
result_df = pd.DataFrame(results)
df = df.reset_index(drop=True)
return pd.concat([df, result_df[['Topic_Summary']]], axis=1)
# ---------------------------------------------------------------------------------------
# Function to Extract Excerpts
# ---------------------------------------------------------------------------------------
def extract_excerpts(processed_df):
new_rows = []
for _, row in processed_df.iterrows():
Topic_Summary = row['Topic_Summary']
# Split the Topic_Summary by topic
sections = re.split(r'\n(?=\[)', Topic_Summary)
for section in sections:
# Extract the topic
topic_match = re.match(r'\[([^\]]+)\]', section)
if topic_match:
topic = topic_match.group(1)
# Extract all excerpts within the section
excerpts = re.findall(r'- "([^"]+)"', section)
for excerpt in excerpts:
new_rows.append({
'Document_Text': row['Document_Text'],
'Topic_Summary': row['Topic_Summary'],
'Excerpt': excerpt,
'Topic': topic
})
return pd.DataFrame(new_rows)
#------------------------------------------------------------------------
# Streamlit Configuration
#------------------------------------------------------------------------
# Set page configuration
st.set_page_config(
page_title="Choose Your Own Adventure (Topic Extraction) PDF Analysis App",
page_icon=":bar_chart:",
layout="centered",
initial_sidebar_state="auto",
menu_items={
'Get Help': 'mailto:[email protected]',
'About': "This app is built to support PDF analysis"
}
)
#------------------------------------------------------------------------
# Sidebar
#------------------------------------------------------------------------
# Sidebar with image
with st.sidebar:
# Set the desired width in pixels
image_width = 300
# Define the path to the image
# image_path = "steelcase_small.png"
image_path = "/Users/clevesse/Documents/VSC_Code/PDF_Extraction/PDF_Extraction_streamlit/steelcase_small.png"
# Display the image
st.image(image_path, width=image_width)
# Additional sidebar content
with st.expander("**WorkSpace Futures**", expanded=True):
st.write("""
Strategic Market Intelligence
Director: Amy Willard
- **Support**: Cheyne LeVesseur PhD
- **Email**: [email protected]
""")
st.divider()
st.subheader('Instructions')
Instructions = """
- **Step 1**: Upload your PDF file.
- **Step 2**: Review the processed meeting notes with extracted excerpts and classifications.
- **Step 3**: Review topic descriptions.
- **Step 4**: Review topic distribution and frequency.
- **Step 5**: Review bar charts of topics.
- **Step 6**: Download the processed data as a CSV file.
"""
st.markdown(Instructions)
# Load SmolDocling model (mlx_vlm version)
@st.cache_resource
def load_smol_docling():
model_path = "ds4sd/SmolDocling-256M-preview-mlx-bf16"
model, processor = load(model_path)
config = load_config(model_path)
return model, processor, config
model, processor, config = load_smol_docling()
# Convert PDF to images
def convert_pdf_to_images(pdf_file):
images = []
doc = fitz.open(stream=pdf_file.read(), filetype="pdf")
for page_number in range(len(doc)):
page = doc.load_page(page_number)
pix = page.get_pixmap(dpi=300) # Higher DPI for clarity
img_data = pix.tobytes("png")
image = Image.open(io.BytesIO(img_data))
images.append(image)
return images
# Extract structured markdown text using SmolDocling (mlx_vlm)
def extract_markdown_from_image(image):
prompt = "Convert this page to docling."
formatted_prompt = apply_chat_template(processor, config, prompt, num_images=1)
output = ""
for token in stream_generate(
model, processor, formatted_prompt, [image], max_tokens=4096, verbose=False):
output += token.text
if "</doctag>" in token.text:
break
# Convert DocTags to Markdown
doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([output], [image])
doc = DoclingDocument(name="ExtractedDocument")
doc.load_from_doctags(doctags_doc)
markdown_text = doc.export_to_markdown()
return markdown_text
# Streamlit UI
st.title("Choose Your Own Adventure (Topic Extraction) PDF Analysis App")
uploaded_file = st.file_uploader("Upload PDF file", type=["pdf"])
if uploaded_file:
with st.spinner("Processing PDF..."):
images = convert_pdf_to_images(uploaded_file)
markdown_texts = []
for idx, image in enumerate(images):
markdown_text = extract_markdown_from_image(image)
markdown_texts.append(markdown_text)
df = pd.DataFrame({'Document_Text': markdown_texts})
st.success("PDF processed successfully!")
# Check if extraction was successful
if df.empty or df['Document_Text'].isnull().all():
st.error("No meaningful text extracted from the PDF.")
st.stop()
st.markdown("### Extracted Markdown Preview")
st.write(df.head())
# ---------------------------------------------------------------------------------------
# User Input for Topics
# ---------------------------------------------------------------------------------------
st.markdown("### Enter Topics and Descriptions")
num_topics = st.number_input("Number of topics", min_value=1, max_value=10, value=1, step=1)
topics = {}
for i in range(num_topics):
topic = st.text_input(f"Topic {i+1} Name", key=f"topic_{i}")
description = st.text_area(f"Topic {i+1} Description", key=f"description_{i}")
if topic and description:
topics[topic] = description
# Add a button to execute the analysis
if st.button("Run Analysis"):
if not topics:
st.warning("Please enter at least one topic and description.")
st.stop()
# ---------------------------------------------------------------------------------------
# Your existing SurveyAnalysis and extract_excerpts functions remain unchanged here:
# ---------------------------------------------------------------------------------------
analyzer = SurveyAnalysis()
processed_df = analyzer.process_dataframe(df, topics)
df_VIP_extracted = extract_excerpts(processed_df)
required_columns = ['Document_Text', 'Topic_Summary', 'Excerpt', 'Topic']
missing_columns = [col for col in required_columns if col not in df_VIP_extracted.columns]
if missing_columns:
st.error(f"Missing columns after processing: {missing_columns}")
st.stop()
df_VIP_extracted = df_VIP_extracted[required_columns]
st.markdown("### Processed Meeting Notes")
st.dataframe(df_VIP_extracted)
st.write(f"**Number of meeting notes analyzed:** {len(df)}")
st.write(f"**Number of excerpts extracted:** {len(df_VIP_extracted)}")
# CSV download
csv = df_VIP_extracted.to_csv(index=False)
st.download_button(
"Download data as CSV",
data=csv,
file_name='extracted_meeting_notes.csv',
mime='text/csv'
)
# Topic distribution visualization
topic_counts = df_VIP_extracted['Topic'].value_counts()
frequency_table = pd.DataFrame({'Topic': topic_counts.index, 'Count': topic_counts.values})
frequency_table['Percentage'] = (frequency_table['Count'] / frequency_table['Count'].sum() * 100).round(0)
st.markdown("### Topic Distribution")
st.dataframe(frequency_table)
fig, ax = plt.subplots(figsize=(10, 5))
ax.bar(frequency_table['Topic'], frequency_table['Count'], color='#3d9aa1')
ax.set_ylabel('Count')
ax.set_title('Frequency of Topics')
st.pyplot(fig)
else:
st.info("Please upload a PDF file to begin.") |