File size: 17,488 Bytes
4eeb369
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2cebcc7
 
4eeb369
 
2cebcc7
 
 
 
4eeb369
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
import gradio as gr
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler
from transformers import AutoProcessor, AutoModelForVision2Seq, AutoModelForCausalLM, AutoTokenizer
import torch
from PIL import Image, ImageDraw, ImageFont
import numpy as np
import textwrap
import os
import gc
import re
from datetime import datetime
import spaces
from kokoro import KPipeline
import soundfile as sf

# Initialize models at startup - outside of functions
print("Loading models...")

# Load SmolVLM for image analysis
processor_vlm = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM-500M-Instruct")
model_vlm = AutoModelForVision2Seq.from_pretrained(
    "HuggingFaceTB/SmolVLM-500M-Instruct", 
    torch_dtype=torch.bfloat16,
    use_safetensors=True
)

# Load SmolLM2 for story and prompt generation
checkpoint = "HuggingFaceTB/SmolLM2-1.7B-Instruct"
tokenizer_lm = AutoTokenizer.from_pretrained(checkpoint)
model_lm = AutoModelForCausalLM.from_pretrained(
    checkpoint,
    use_safetensors=True
)

# Load Stable Diffusion pipeline
pipe = StableDiffusionPipeline.from_pretrained(
    "runwayml/stable-diffusion-v1-5",
    torch_dtype=torch.float16,
    use_safetensors=True
)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)

# Move models to GPU if available
if torch.cuda.is_available():
    model_vlm = model_vlm.to("cuda")
    model_lm = model_lm.to("cuda")
    pipe = pipe.to("cuda")

@torch.inference_mode()
@spaces.GPU(duration=30)
def generate_image():
    """Generate a random landscape image."""
    torch.cuda.empty_cache()
    
    default_prompt = "a beautiful, professional landscape photograph"
    default_negative_prompt = "blurry, bad quality, distorted, deformed"
    default_steps = 30
    default_guidance = 7.5
    default_seed = torch.randint(0, 2**32 - 1, (1,)).item()
    
    generator = torch.Generator("cuda").manual_seed(default_seed)
    
    image = pipe(
        prompt=default_prompt,
        negative_prompt=default_negative_prompt,
        num_inference_steps=default_steps,
        guidance_scale=default_guidance,
        generator=generator,
    ).images[0]
    
    return image

@torch.inference_mode()
@spaces.GPU(duration=30)
def analyze_image(image):
    if image is None:
        return "Please generate an image first."
    
    torch.cuda.empty_cache()
    
    if isinstance(image, np.ndarray):
        image = Image.fromarray(image)
    
    messages = [
        {
            "role": "user",
            "content": [
                {"type": "image"},
                {"type": "text", "text": "Describe this image very briefly in five sentences or less."}
            ]
        }
    ]
    
    prompt = processor_vlm.apply_chat_template(messages, add_generation_prompt=True)
    
    inputs = processor_vlm(
        text=prompt,
        images=[image],
        return_tensors="pt"
    ).to('cuda')
    
    outputs = model_vlm.generate(
        input_ids=inputs.input_ids,
        pixel_values=inputs.pixel_values,
        attention_mask=inputs.attention_mask,
        num_return_sequences=1,
        no_repeat_ngram_size=2,
        max_new_tokens=500,
        min_new_tokens=10 
    )
    
    description = processor_vlm.decode(outputs[0], skip_special_tokens=True)
    description = re.sub(r".*?Assistant:\s*", "", description, flags=re.DOTALL).strip()
    
    return description

@torch.inference_mode()
@spaces.GPU(duration=30)
def generate_story(image_description):
    torch.cuda.empty_cache()
    
    story_prompt = f"""Write a short children's story (one chapter, about 500 words) based on this scene: {image_description}

    Requirements:
    1. Main character: An English bulldog named Champ
    2. Include these values: confidence, teamwork, caring, and hope
    3. Theme: "We are stronger together than as individuals"
    4. Keep it simple and engaging for young children
    5. End with a simple moral lesson"""

    messages = [{"role": "user", "content": story_prompt}]
    input_text = tokenizer_lm.apply_chat_template(messages, tokenize=False)
    
    inputs = tokenizer_lm.encode(input_text, return_tensors="pt").to("cuda")
    
    outputs = model_lm.generate(
        inputs,
        max_new_tokens=750,
        temperature=0.7,
        top_p=0.9,
        do_sample=True,
        repetition_penalty=1.2
    )
    
    story = tokenizer_lm.decode(outputs[0])
    story = clean_story_output(story)
    
    return story

@torch.inference_mode()
@spaces.GPU(duration=30)
def generate_image_prompts(story_text):
    torch.cuda.empty_cache()
    paragraphs = split_into_paragraphs(story_text)
    
    all_prompts = []
    prompt_instruction = '''Here is a story paragraph: {paragraph}

    Start your response with "Watercolor bulldog" and describe what Champ is doing in this scene. Add where it takes place and one mood detail. Keep it short.'''
    
    for i, paragraph in enumerate(paragraphs, 1):
        messages = [{"role": "user", "content": prompt_instruction.format(paragraph=paragraph)}]
        input_text = tokenizer_lm.apply_chat_template(messages, tokenize=False)
        
        inputs = tokenizer_lm.encode(input_text, return_tensors="pt").to("cuda")
        
        outputs = model_lm.generate(
            inputs,
            max_new_tokens=30,
            temperature=0.5,
            top_p=0.9,
            do_sample=True,
            repetition_penalty=1.2
        )
        
        prompt = process_generated_prompt(tokenizer_lm.decode(outputs[0]), paragraph)
        section = f"Paragraph {i}:\n{paragraph}\n\nScenery Prompt {i}:\n{prompt}\n\n{'='*50}"
        all_prompts.append(section)
    
    return '\n'.join(all_prompts)

@torch.inference_mode()
@spaces.GPU(duration=60)
def generate_story_image(prompt):
    torch.cuda.empty_cache()
    
    pipe.load_lora_weights("Prof-Hunt/lora-bulldog")
    enhanced_prompt = f"{prompt}, watercolor style, children's book illustration, soft colors"
    
    image = pipe(
        prompt=enhanced_prompt,
        negative_prompt="deformed, ugly, blurry, bad art, poor quality, distorted",
        num_inference_steps=50,
        guidance_scale=15,
    ).images[0]
    
    return image

@torch.inference_mode()
@spaces.GPU(duration=180)  # Longer duration for multiple image generation
def generate_all_scenes(prompts_text):
    generated_images = []
    formatted_prompts = []
    
    sections = prompts_text.split('='*50)
    
    for section in sections:
        if not section.strip():
            continue
        
        lines = [line.strip() for line in section.split('\n') if line.strip()]
        
        scene_prompt = None
        for i, line in enumerate(lines):
            if 'Scenery Prompt' in line:
                scene_num = line.split('Scenery Prompt')[1].split(':')[0].strip()
                if i + 1 < len(lines):
                    scene_prompt = lines[i + 1]
                    formatted_prompts.append(f"Scene {scene_num}: {scene_prompt}")
                break
        
        if scene_prompt:
            try:
                torch.cuda.empty_cache()
                image = generate_story_image(scene_prompt)
                if image is not None:
                    generated_images.append(np.array(image))
            except Exception as e:
                print(f"Error generating image: {str(e)}")
                continue
    
    return generated_images, "\n\n".join(formatted_prompts)

# Helper functions without GPU usage
def clean_story_output(story):
    story = story.replace("<|im_end|>", "")
    
    story_start = story.find("Once upon")
    if story_start == -1:
        possible_starts = ["One day", "In a", "There was", "Champ"]
        for marker in possible_starts:
            story_start = story.find(marker)
            if story_start != -1:
                break
    
    if story_start != -1:
        story = story[story_start:]
    
    lines = story.split('\n')
    cleaned_lines = []
    for line in lines:
        line = line.strip()
        if line and not any(skip in line.lower() for skip in ['requirement', 'include these values', 'theme:', 'keep it simple', 'end with', 'write a']):
            if not line.startswith(('1.', '2.', '3.', '4.', '5.')):
                cleaned_lines.append(line)
    
    return '\n\n'.join(cleaned_lines).strip()

def split_into_paragraphs(text):
    paragraphs = []
    current_paragraph = []
    
    for line in text.split('\n'):
        line = line.strip()
        if not line:
            if current_paragraph:
                paragraphs.append(' '.join(current_paragraph))
                current_paragraph = []
        else:
            current_paragraph.append(line)
    
    if current_paragraph:
        paragraphs.append(' '.join(current_paragraph))
    
    return [p for p in paragraphs if not any(skip in p.lower() 
            for skip in ['requirement', 'include these values', 'theme:', 
                        'keep it simple', 'end with', 'write a'])]

def process_generated_prompt(prompt, paragraph):
    prompt = prompt.replace("<|im_start|>", "").replace("<|im_end|>", "")
    prompt = prompt.replace("assistant", "").replace("system", "").replace("user", "")
    
    cleaned_lines = [line.strip() for line in prompt.split('\n')
                    if line.strip().lower().startswith("watercolor bulldog")]
    
    if cleaned_lines:
        prompt = cleaned_lines[0]
    else:
        setting = "quiet town" if "quiet town" in paragraph.lower() else "park"
        mood = "hopeful" if "wished" in paragraph.lower() else "peaceful"
        prompt = f"Watercolor bulldog watching friends play in {setting}, {mood} atmosphere."
    
    if not prompt.endswith('.'):
        prompt = prompt + '.'
    
    return prompt

def overlay_text_on_image(image, text):
    if isinstance(image, np.ndarray):
        image = Image.fromarray(image)
    
    img = image.convert('RGB')
    draw = ImageDraw.Draw(img)
    
    try:
        font_size = int(img.width * 0.025)
        font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", font_size)
    except:
        font = ImageFont.load_default()

    y_position = int(img.height * 0.005)
    x_margin = int(img.width * 0.005)
    available_width = img.width - (2 * x_margin)
    
    wrapped_text = textwrap.fill(text, width=int(available_width / (font_size * 0.6)))
    
    outline_color = (255, 255, 255)
    text_color = (0, 0, 0)
    offsets = [-2, -1, 1, 2]

    for dx in offsets:
        for dy in offsets:
            draw.multiline_text(
                (x_margin + dx, y_position + dy),
                wrapped_text,
                font=font,
                fill=outline_color
            )

    draw.multiline_text(
        (x_margin, y_position),
        wrapped_text,
        font=font,
        fill=text_color
    )

    return img

# Initialize Kokoro TTS pipeline
pipeline = KPipeline(lang_code='a')  # 'a' for American English

def generate_combined_audio_from_story(story_text, voice='af_heart', speed=1):
    """Generate a single audio file for all paragraphs in the story."""
    if not story_text:
        return None
        
    # Split story into paragraphs
    paragraphs = []
    current_paragraph = []
    
    for line in story_text.split('\n'):
        line = line.strip()
        if not line:  # Empty line indicates paragraph break
            if current_paragraph:
                paragraphs.append(' '.join(current_paragraph))
                current_paragraph = []
        else:
            current_paragraph.append(line)
    
    if current_paragraph:
        paragraphs.append(' '.join(current_paragraph))
    
    # Combine audio for all paragraphs
    combined_audio = []
    for paragraph in paragraphs:
        if not paragraph.strip():
            continue  # Skip empty paragraphs

        generator = pipeline(
            paragraph,
            voice=voice,
            speed=speed,
            split_pattern=r'\n+'  # Split on newlines
        )
        for _, _, audio in generator:
            combined_audio.extend(audio)  # Append audio data

    # Convert combined audio to NumPy array and save
    combined_audio = np.array(combined_audio)
    filename = "combined_story.wav"
    sf.write(filename, combined_audio, 24000)  # Save audio as .wav
    return filename

def add_text_to_scenes(gallery_images, prompts_text):
    if not isinstance(gallery_images, list):
        return [], []
    
    sections = prompts_text.split('='*50)
    overlaid_images = []
    output_files = []
    
    temp_dir = "temp_book_pages"
    os.makedirs(temp_dir, exist_ok=True)
    
    for i, (image_data, section) in enumerate(zip(gallery_images, sections)):
        if not section.strip():
            continue
            
        lines = [line.strip() for line in section.split('\n') if line.strip()]
        paragraph = None
        for j, line in enumerate(lines):
            if line.startswith('Paragraph'):
                if j + 1 < len(lines):
                    paragraph = lines[j + 1]
                    break
        
        if paragraph and image_data is not None:
            try:
                overlaid_img = overlay_text_on_image(image_data, paragraph)
                if overlaid_img is not None:
                    overlaid_array = np.array(overlaid_img)
                    overlaid_images.append(overlaid_array)
                    
                    output_path = os.path.join(temp_dir, f"panel_{i+1}.png")
                    overlaid_img.save(output_path)
                    output_files.append(output_path)
            except Exception as e:
                print(f"Error processing image: {str(e)}")
                continue
    
    return overlaid_images, output_files

def create_interface():
    theme = gr.themes.Soft().set(
        body_background_fill="*primary_50",
        button_primary_background_fill="rgb(173, 216, 230)",  # light blue
        button_secondary_background_fill="rgb(255, 182, 193)",  # light red
        button_primary_background_fill_hover="rgb(135, 206, 235)",  # slightly darker blue for hover
        button_secondary_background_fill_hover="rgb(255, 160, 180)",  # slightly darker red for hover
        block_title_text_color="*primary_500",
        block_label_text_color="*secondary_500",
    )

    with gr.Blocks(theme=theme) as demo:
        gr.Markdown("# Tech Tales: Story Creation")
        
        with gr.Row():
            generate_btn = gr.Button("1. Generate Random Landscape")
            image_output = gr.Image(label="Generated Image", type="pil")
            
        with gr.Row():
            analyze_btn = gr.Button("2. Get Brief Description")
            analysis_output = gr.Textbox(label="Image Description", lines=3)
        
        with gr.Row():
            story_btn = gr.Button("3. Create Children's Story")
            story_output = gr.Textbox(label="Generated Story", lines=10)
        
        with gr.Row():
            prompts_btn = gr.Button("4. Generate Scene Prompts")
            prompts_output = gr.Textbox(label="Generated Scene Prompts", lines=20)
        
        with gr.Row():
            generate_scenes_btn = gr.Button("5. Generate Story Scenes", variant="primary")
            
        with gr.Row():
            scene_prompts_display = gr.Textbox(
                label="Scenes Being Generated",
                lines=8,
                interactive=False
            )
        
        with gr.Row():
            gallery = gr.Gallery(
                label="Story Scenes",
                show_label=True,
                columns=2,
                height="auto"
            )
        
        with gr.Row():
            add_text_btn = gr.Button("6. Add Text to Scenes", variant="primary")
        
        with gr.Row():
            final_gallery = gr.Gallery(
                label="Story Book Pages",
                show_label=True,
                columns=2,
                height="auto"
            )
            
        with gr.Row():
            download_btn = gr.File(
                label="Download Story Book",
                file_count="multiple",
                interactive=False
            )
            
        with gr.Row():
            tts_btn = gr.Button("7. Read Story Aloud")
            audio_output = gr.Audio(label="Story Audio")

        # Event handlers
        generate_btn.click(
            fn=generate_image,
            outputs=image_output
        )
        
        analyze_btn.click(
            fn=analyze_image,
            inputs=[image_output],
            outputs=analysis_output
        )
        
        story_btn.click(
            fn=generate_story,
            inputs=[analysis_output],
            outputs=story_output
        )
        
        prompts_btn.click(
            fn=generate_image_prompts,
            inputs=[story_output],
            outputs=prompts_output
        )
        
        generate_scenes_btn.click(
            fn=generate_all_scenes,
            inputs=[prompts_output],
            outputs=[gallery, scene_prompts_display]
        )
        
        add_text_btn.click(
            fn=add_text_to_scenes,
            inputs=[gallery, prompts_output],
            outputs=[final_gallery, download_btn]
        )
        
        tts_btn.click(
            fn=generate_combined_audio_from_story,
            inputs=[story_output],
            outputs=audio_output
        )

    return demo

if __name__ == "__main__":
    demo = create_interface()
    demo.launch()