Spaces:
Runtime error
Runtime error
File size: 17,488 Bytes
4eeb369 2cebcc7 4eeb369 2cebcc7 4eeb369 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 |
import gradio as gr
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler
from transformers import AutoProcessor, AutoModelForVision2Seq, AutoModelForCausalLM, AutoTokenizer
import torch
from PIL import Image, ImageDraw, ImageFont
import numpy as np
import textwrap
import os
import gc
import re
from datetime import datetime
import spaces
from kokoro import KPipeline
import soundfile as sf
# Initialize models at startup - outside of functions
print("Loading models...")
# Load SmolVLM for image analysis
processor_vlm = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM-500M-Instruct")
model_vlm = AutoModelForVision2Seq.from_pretrained(
"HuggingFaceTB/SmolVLM-500M-Instruct",
torch_dtype=torch.bfloat16,
use_safetensors=True
)
# Load SmolLM2 for story and prompt generation
checkpoint = "HuggingFaceTB/SmolLM2-1.7B-Instruct"
tokenizer_lm = AutoTokenizer.from_pretrained(checkpoint)
model_lm = AutoModelForCausalLM.from_pretrained(
checkpoint,
use_safetensors=True
)
# Load Stable Diffusion pipeline
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float16,
use_safetensors=True
)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
# Move models to GPU if available
if torch.cuda.is_available():
model_vlm = model_vlm.to("cuda")
model_lm = model_lm.to("cuda")
pipe = pipe.to("cuda")
@torch.inference_mode()
@spaces.GPU(duration=30)
def generate_image():
"""Generate a random landscape image."""
torch.cuda.empty_cache()
default_prompt = "a beautiful, professional landscape photograph"
default_negative_prompt = "blurry, bad quality, distorted, deformed"
default_steps = 30
default_guidance = 7.5
default_seed = torch.randint(0, 2**32 - 1, (1,)).item()
generator = torch.Generator("cuda").manual_seed(default_seed)
image = pipe(
prompt=default_prompt,
negative_prompt=default_negative_prompt,
num_inference_steps=default_steps,
guidance_scale=default_guidance,
generator=generator,
).images[0]
return image
@torch.inference_mode()
@spaces.GPU(duration=30)
def analyze_image(image):
if image is None:
return "Please generate an image first."
torch.cuda.empty_cache()
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "Describe this image very briefly in five sentences or less."}
]
}
]
prompt = processor_vlm.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor_vlm(
text=prompt,
images=[image],
return_tensors="pt"
).to('cuda')
outputs = model_vlm.generate(
input_ids=inputs.input_ids,
pixel_values=inputs.pixel_values,
attention_mask=inputs.attention_mask,
num_return_sequences=1,
no_repeat_ngram_size=2,
max_new_tokens=500,
min_new_tokens=10
)
description = processor_vlm.decode(outputs[0], skip_special_tokens=True)
description = re.sub(r".*?Assistant:\s*", "", description, flags=re.DOTALL).strip()
return description
@torch.inference_mode()
@spaces.GPU(duration=30)
def generate_story(image_description):
torch.cuda.empty_cache()
story_prompt = f"""Write a short children's story (one chapter, about 500 words) based on this scene: {image_description}
Requirements:
1. Main character: An English bulldog named Champ
2. Include these values: confidence, teamwork, caring, and hope
3. Theme: "We are stronger together than as individuals"
4. Keep it simple and engaging for young children
5. End with a simple moral lesson"""
messages = [{"role": "user", "content": story_prompt}]
input_text = tokenizer_lm.apply_chat_template(messages, tokenize=False)
inputs = tokenizer_lm.encode(input_text, return_tensors="pt").to("cuda")
outputs = model_lm.generate(
inputs,
max_new_tokens=750,
temperature=0.7,
top_p=0.9,
do_sample=True,
repetition_penalty=1.2
)
story = tokenizer_lm.decode(outputs[0])
story = clean_story_output(story)
return story
@torch.inference_mode()
@spaces.GPU(duration=30)
def generate_image_prompts(story_text):
torch.cuda.empty_cache()
paragraphs = split_into_paragraphs(story_text)
all_prompts = []
prompt_instruction = '''Here is a story paragraph: {paragraph}
Start your response with "Watercolor bulldog" and describe what Champ is doing in this scene. Add where it takes place and one mood detail. Keep it short.'''
for i, paragraph in enumerate(paragraphs, 1):
messages = [{"role": "user", "content": prompt_instruction.format(paragraph=paragraph)}]
input_text = tokenizer_lm.apply_chat_template(messages, tokenize=False)
inputs = tokenizer_lm.encode(input_text, return_tensors="pt").to("cuda")
outputs = model_lm.generate(
inputs,
max_new_tokens=30,
temperature=0.5,
top_p=0.9,
do_sample=True,
repetition_penalty=1.2
)
prompt = process_generated_prompt(tokenizer_lm.decode(outputs[0]), paragraph)
section = f"Paragraph {i}:\n{paragraph}\n\nScenery Prompt {i}:\n{prompt}\n\n{'='*50}"
all_prompts.append(section)
return '\n'.join(all_prompts)
@torch.inference_mode()
@spaces.GPU(duration=60)
def generate_story_image(prompt):
torch.cuda.empty_cache()
pipe.load_lora_weights("Prof-Hunt/lora-bulldog")
enhanced_prompt = f"{prompt}, watercolor style, children's book illustration, soft colors"
image = pipe(
prompt=enhanced_prompt,
negative_prompt="deformed, ugly, blurry, bad art, poor quality, distorted",
num_inference_steps=50,
guidance_scale=15,
).images[0]
return image
@torch.inference_mode()
@spaces.GPU(duration=180) # Longer duration for multiple image generation
def generate_all_scenes(prompts_text):
generated_images = []
formatted_prompts = []
sections = prompts_text.split('='*50)
for section in sections:
if not section.strip():
continue
lines = [line.strip() for line in section.split('\n') if line.strip()]
scene_prompt = None
for i, line in enumerate(lines):
if 'Scenery Prompt' in line:
scene_num = line.split('Scenery Prompt')[1].split(':')[0].strip()
if i + 1 < len(lines):
scene_prompt = lines[i + 1]
formatted_prompts.append(f"Scene {scene_num}: {scene_prompt}")
break
if scene_prompt:
try:
torch.cuda.empty_cache()
image = generate_story_image(scene_prompt)
if image is not None:
generated_images.append(np.array(image))
except Exception as e:
print(f"Error generating image: {str(e)}")
continue
return generated_images, "\n\n".join(formatted_prompts)
# Helper functions without GPU usage
def clean_story_output(story):
story = story.replace("<|im_end|>", "")
story_start = story.find("Once upon")
if story_start == -1:
possible_starts = ["One day", "In a", "There was", "Champ"]
for marker in possible_starts:
story_start = story.find(marker)
if story_start != -1:
break
if story_start != -1:
story = story[story_start:]
lines = story.split('\n')
cleaned_lines = []
for line in lines:
line = line.strip()
if line and not any(skip in line.lower() for skip in ['requirement', 'include these values', 'theme:', 'keep it simple', 'end with', 'write a']):
if not line.startswith(('1.', '2.', '3.', '4.', '5.')):
cleaned_lines.append(line)
return '\n\n'.join(cleaned_lines).strip()
def split_into_paragraphs(text):
paragraphs = []
current_paragraph = []
for line in text.split('\n'):
line = line.strip()
if not line:
if current_paragraph:
paragraphs.append(' '.join(current_paragraph))
current_paragraph = []
else:
current_paragraph.append(line)
if current_paragraph:
paragraphs.append(' '.join(current_paragraph))
return [p for p in paragraphs if not any(skip in p.lower()
for skip in ['requirement', 'include these values', 'theme:',
'keep it simple', 'end with', 'write a'])]
def process_generated_prompt(prompt, paragraph):
prompt = prompt.replace("<|im_start|>", "").replace("<|im_end|>", "")
prompt = prompt.replace("assistant", "").replace("system", "").replace("user", "")
cleaned_lines = [line.strip() for line in prompt.split('\n')
if line.strip().lower().startswith("watercolor bulldog")]
if cleaned_lines:
prompt = cleaned_lines[0]
else:
setting = "quiet town" if "quiet town" in paragraph.lower() else "park"
mood = "hopeful" if "wished" in paragraph.lower() else "peaceful"
prompt = f"Watercolor bulldog watching friends play in {setting}, {mood} atmosphere."
if not prompt.endswith('.'):
prompt = prompt + '.'
return prompt
def overlay_text_on_image(image, text):
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
img = image.convert('RGB')
draw = ImageDraw.Draw(img)
try:
font_size = int(img.width * 0.025)
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", font_size)
except:
font = ImageFont.load_default()
y_position = int(img.height * 0.005)
x_margin = int(img.width * 0.005)
available_width = img.width - (2 * x_margin)
wrapped_text = textwrap.fill(text, width=int(available_width / (font_size * 0.6)))
outline_color = (255, 255, 255)
text_color = (0, 0, 0)
offsets = [-2, -1, 1, 2]
for dx in offsets:
for dy in offsets:
draw.multiline_text(
(x_margin + dx, y_position + dy),
wrapped_text,
font=font,
fill=outline_color
)
draw.multiline_text(
(x_margin, y_position),
wrapped_text,
font=font,
fill=text_color
)
return img
# Initialize Kokoro TTS pipeline
pipeline = KPipeline(lang_code='a') # 'a' for American English
def generate_combined_audio_from_story(story_text, voice='af_heart', speed=1):
"""Generate a single audio file for all paragraphs in the story."""
if not story_text:
return None
# Split story into paragraphs
paragraphs = []
current_paragraph = []
for line in story_text.split('\n'):
line = line.strip()
if not line: # Empty line indicates paragraph break
if current_paragraph:
paragraphs.append(' '.join(current_paragraph))
current_paragraph = []
else:
current_paragraph.append(line)
if current_paragraph:
paragraphs.append(' '.join(current_paragraph))
# Combine audio for all paragraphs
combined_audio = []
for paragraph in paragraphs:
if not paragraph.strip():
continue # Skip empty paragraphs
generator = pipeline(
paragraph,
voice=voice,
speed=speed,
split_pattern=r'\n+' # Split on newlines
)
for _, _, audio in generator:
combined_audio.extend(audio) # Append audio data
# Convert combined audio to NumPy array and save
combined_audio = np.array(combined_audio)
filename = "combined_story.wav"
sf.write(filename, combined_audio, 24000) # Save audio as .wav
return filename
def add_text_to_scenes(gallery_images, prompts_text):
if not isinstance(gallery_images, list):
return [], []
sections = prompts_text.split('='*50)
overlaid_images = []
output_files = []
temp_dir = "temp_book_pages"
os.makedirs(temp_dir, exist_ok=True)
for i, (image_data, section) in enumerate(zip(gallery_images, sections)):
if not section.strip():
continue
lines = [line.strip() for line in section.split('\n') if line.strip()]
paragraph = None
for j, line in enumerate(lines):
if line.startswith('Paragraph'):
if j + 1 < len(lines):
paragraph = lines[j + 1]
break
if paragraph and image_data is not None:
try:
overlaid_img = overlay_text_on_image(image_data, paragraph)
if overlaid_img is not None:
overlaid_array = np.array(overlaid_img)
overlaid_images.append(overlaid_array)
output_path = os.path.join(temp_dir, f"panel_{i+1}.png")
overlaid_img.save(output_path)
output_files.append(output_path)
except Exception as e:
print(f"Error processing image: {str(e)}")
continue
return overlaid_images, output_files
def create_interface():
theme = gr.themes.Soft().set(
body_background_fill="*primary_50",
button_primary_background_fill="rgb(173, 216, 230)", # light blue
button_secondary_background_fill="rgb(255, 182, 193)", # light red
button_primary_background_fill_hover="rgb(135, 206, 235)", # slightly darker blue for hover
button_secondary_background_fill_hover="rgb(255, 160, 180)", # slightly darker red for hover
block_title_text_color="*primary_500",
block_label_text_color="*secondary_500",
)
with gr.Blocks(theme=theme) as demo:
gr.Markdown("# Tech Tales: Story Creation")
with gr.Row():
generate_btn = gr.Button("1. Generate Random Landscape")
image_output = gr.Image(label="Generated Image", type="pil")
with gr.Row():
analyze_btn = gr.Button("2. Get Brief Description")
analysis_output = gr.Textbox(label="Image Description", lines=3)
with gr.Row():
story_btn = gr.Button("3. Create Children's Story")
story_output = gr.Textbox(label="Generated Story", lines=10)
with gr.Row():
prompts_btn = gr.Button("4. Generate Scene Prompts")
prompts_output = gr.Textbox(label="Generated Scene Prompts", lines=20)
with gr.Row():
generate_scenes_btn = gr.Button("5. Generate Story Scenes", variant="primary")
with gr.Row():
scene_prompts_display = gr.Textbox(
label="Scenes Being Generated",
lines=8,
interactive=False
)
with gr.Row():
gallery = gr.Gallery(
label="Story Scenes",
show_label=True,
columns=2,
height="auto"
)
with gr.Row():
add_text_btn = gr.Button("6. Add Text to Scenes", variant="primary")
with gr.Row():
final_gallery = gr.Gallery(
label="Story Book Pages",
show_label=True,
columns=2,
height="auto"
)
with gr.Row():
download_btn = gr.File(
label="Download Story Book",
file_count="multiple",
interactive=False
)
with gr.Row():
tts_btn = gr.Button("7. Read Story Aloud")
audio_output = gr.Audio(label="Story Audio")
# Event handlers
generate_btn.click(
fn=generate_image,
outputs=image_output
)
analyze_btn.click(
fn=analyze_image,
inputs=[image_output],
outputs=analysis_output
)
story_btn.click(
fn=generate_story,
inputs=[analysis_output],
outputs=story_output
)
prompts_btn.click(
fn=generate_image_prompts,
inputs=[story_output],
outputs=prompts_output
)
generate_scenes_btn.click(
fn=generate_all_scenes,
inputs=[prompts_output],
outputs=[gallery, scene_prompts_display]
)
add_text_btn.click(
fn=add_text_to_scenes,
inputs=[gallery, prompts_output],
outputs=[final_gallery, download_btn]
)
tts_btn.click(
fn=generate_combined_audio_from_story,
inputs=[story_output],
outputs=audio_output
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch() |