import gradio as gr import pandas as pd import easyocr from paddleocr import PaddleOCR from file_processing import read_file from entity_recognition import process_text from utils import safe_dataframe # Initialize PaddleOCR globally (CPU mode) reader = PaddleOCR(use_angle_cls=True, lang="en") # reader = easyocr.Reader(['en'],download_enabled=True, gpu=True) # Initialize OCR model with gr.Blocks() as demo: gr.Markdown("# 🏥 Medical Lab Test Report Extracter") with gr.Row(): file_input = gr.File(label="📂 Upload Report") submit_btn = gr.Button("Extract",visible=False) welcome_msg=gr.Markdown("# Please Upload any lab report file 📂 and the processing will start automatically ") def invisible(): return gr.update(visible=False) file_input.upload(invisible,outputs=welcome_msg,api_name=False) @gr.render(inputs=file_input,triggers=[file_input.upload]) def extract(file): """Processes the uploaded file and extracts medical data.""" # welcome_msg.update(visible=False) text = read_file(file.name, reader) # Read the file (implement `read_file`) print("Performing NER...") output = process_text(text) # Perform entity recognition (implement `process_text`) metadata = output["metadata"] metadata_str = f"**Patient Name:** {metadata['patient_name']}\n\n" \ f"**Age:** {metadata['age']} \n\n" \ f"**Gender:** {metadata['gender']}\n\n" \ f"**Lab Name:** {metadata['lab_name']}\n\n" \ f"**Report Date:** {metadata['report_date']}" print(f"Processed report for {metadata['patient_name']}") metadata_md = gr.Markdown(metadata_str) for test in output["report"]: test_type = test["test_type"] lab_tests = safe_dataframe(test,"lab_tests") gr.Markdown(f"### 📊 Test : {test_type}") gr.Dataframe(lab_tests) gr.JSON(output,label="📜 Extracted Report") return output output_JSON=gr.JSON(visible=False) submit_btn.click(extract,inputs=file_input,outputs=output_JSON,api_name="extract_report") demo.launch(debug=True, share=True)