Prashasst commited on
Commit
7779972
Β·
verified Β·
1 Parent(s): 0a46d34

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -6
app.py CHANGED
@@ -1,11 +1,19 @@
 
 
1
  import gradio as gr
2
  import pandas as pd
3
  import easyocr
 
4
  from file_processing import FileProcessor
5
  from entity_recognition import process_text
6
  from utils import safe_dataframe
7
 
8
- reader = easyocr.Reader(['en'],download_enabled=True, gpu=True) # Initialize OCR model
 
 
 
 
 
9
 
10
 
11
 
@@ -15,17 +23,22 @@ with gr.Blocks() as demo:
15
 
16
  with gr.Row():
17
  file_input = gr.File(label="πŸ“‚ Upload Report")
18
- # submit_btn = gr.Button("Extract")
 
 
 
 
 
 
19
 
20
-
21
- # metadata_md = gr.Markdown("Report will show below....")
22
- # submit_btn.click(fn=extract_it,inputs=file_input,outputs=metadata_md)
23
 
24
 
25
 
26
  @gr.render(inputs=file_input,triggers=[file_input.upload])
27
  def extract(file):
28
  """Processes the uploaded file and extracts medical data."""
 
 
29
 
30
  text = read_file(file.name, reader) # Read the file (implement `read_file`)
31
  print("Performing NER...")
@@ -44,6 +57,7 @@ with gr.Blocks() as demo:
44
  print(f"Processed report for {metadata['patient_name']}")
45
  metadata_md = gr.Markdown(metadata_str)
46
 
 
47
  for test in output["report"]:
48
  test_type = test["test_type"]
49
  lab_tests = safe_dataframe(test,"lab_tests")
@@ -53,6 +67,7 @@ with gr.Blocks() as demo:
53
 
54
  gr.JSON(output,label="πŸ“œ Extracted Report")
55
  return output
56
-
 
57
 
58
  demo.launch(debug=True, share=True)
 
1
+
2
+
3
  import gradio as gr
4
  import pandas as pd
5
  import easyocr
6
+ from paddleocr import PaddleOCR
7
  from file_processing import FileProcessor
8
  from entity_recognition import process_text
9
  from utils import safe_dataframe
10
 
11
+
12
+ # Initialize PaddleOCR globally (CPU mode)
13
+ reader = PaddleOCR(use_angle_cls=True, lang="en")
14
+
15
+ # reader = easyocr.Reader(['en'],download_enabled=True, gpu=True) # Initialize OCR model
16
+
17
 
18
 
19
 
 
23
 
24
  with gr.Row():
25
  file_input = gr.File(label="πŸ“‚ Upload Report")
26
+ submit_btn = gr.Button("Extract",visible=False)
27
+
28
+ welcome_msg=gr.Markdown("# Please Upload any lab report file πŸ“‚ and the processing will start automatically ")
29
+
30
+ def invisible():
31
+ return gr.update(visible=False)
32
+ file_input.upload(invisible,outputs=welcome_msg,api_name=False)
33
 
 
 
 
34
 
35
 
36
 
37
  @gr.render(inputs=file_input,triggers=[file_input.upload])
38
  def extract(file):
39
  """Processes the uploaded file and extracts medical data."""
40
+ # welcome_msg.update(visible=False)
41
+
42
 
43
  text = read_file(file.name, reader) # Read the file (implement `read_file`)
44
  print("Performing NER...")
 
57
  print(f"Processed report for {metadata['patient_name']}")
58
  metadata_md = gr.Markdown(metadata_str)
59
 
60
+
61
  for test in output["report"]:
62
  test_type = test["test_type"]
63
  lab_tests = safe_dataframe(test,"lab_tests")
 
67
 
68
  gr.JSON(output,label="πŸ“œ Extracted Report")
69
  return output
70
+ output_JSON=gr.JSON(visible=False)
71
+ submit_btn.click(extract,inputs=file_input,outputs=output_JSON,api_name="extract_report")
72
 
73
  demo.launch(debug=True, share=True)