Update app.py
Browse filesAdded JSON to api
app.py
CHANGED
@@ -1,30 +1,305 @@
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
googel_api=os.getenv("google_api")
|
5 |
|
6 |
|
7 |
|
8 |
-
# Your existing functions: read_pdf, generate, showdata
|
9 |
def read_pdf(pdf_path):
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
"
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
},
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
def showdata(lab_tests):
|
30 |
df = pd.DataFrame(lab_tests)
|
@@ -33,17 +308,19 @@ def showdata(lab_tests):
|
|
33 |
# Gradio interface function
|
34 |
def process_pdf(pdf):
|
35 |
text = read_pdf(pdf.name) # Extract text from PDF
|
36 |
-
|
37 |
|
|
|
38 |
metadata = json_data["metadata"]
|
|
|
|
|
39 |
metadata_str = f"**Patient Name:** {metadata['patient_name']}\n\n" \
|
40 |
f"**Age:** {metadata['age']}\n\n" \
|
41 |
f"**Gender:** {metadata['gender']}\n\n" \
|
42 |
f"**Lab Name:** {metadata['lab_name']}\n\n" \
|
43 |
f"**Report Date:** {metadata['report_date']}"
|
44 |
|
45 |
-
|
46 |
-
return metadata_str, lab_tests_df
|
47 |
|
48 |
# Define Gradio interface
|
49 |
with gr.Blocks() as demo:
|
@@ -58,5 +335,9 @@ with gr.Blocks() as demo:
|
|
58 |
|
59 |
submit_btn.click(process_pdf, inputs=[pdf_input], outputs=[metadata_output, lab_test_output])
|
60 |
|
|
|
|
|
|
|
|
|
61 |
# Launch the app
|
62 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
import os
|
4 |
+
import fitz
|
5 |
+
import pytesseract
|
6 |
+
import base64
|
7 |
+
from google import genai
|
8 |
+
from google.genai import types
|
9 |
+
|
10 |
googel_api=os.getenv("google_api")
|
11 |
|
12 |
|
13 |
|
|
|
14 |
def read_pdf(pdf_path):
|
15 |
+
text = ""
|
16 |
+
doc = fitz.open(pdf_path)
|
17 |
+
for page_num in range(len(doc)):
|
18 |
+
page = doc.load_page(page_num)
|
19 |
+
page_text = page.get_text()
|
20 |
+
if page_text.strip():
|
21 |
+
text += page_text + "\n"
|
22 |
+
else:
|
23 |
+
# print(f"Image found in Page {page_num + 1} Performing OCR...")
|
24 |
+
images = convert_from_path(pdf_path, first_page=page_num + 1, last_page=page_num + 1)
|
25 |
+
for img in images:
|
26 |
+
text += pytesseract.image_to_string(img) + "\n"
|
27 |
+
# print(f"Extracted text preview:\n{text[:600]}...")
|
28 |
+
return text.strip()
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
def generate(extracted_text):
|
34 |
+
client = genai.Client(
|
35 |
+
api_key=google_api,
|
36 |
+
)
|
37 |
+
|
38 |
+
model = "gemini-2.0-flash"
|
39 |
+
contents = [
|
40 |
+
types.Content(
|
41 |
+
role="user",
|
42 |
+
parts=[
|
43 |
+
types.Part.from_text(text="""The following text is extracted from a medical lab report using OCR.
|
44 |
+
There may be errors such as missing decimals, incorrect test names, and incorrect reference ranges.
|
45 |
+
Please correct the errors and extract both metadata and structured lab test data.
|
46 |
+
ALWAYS MAKE SURE THAT THE VALUE ALIGNS WITH THE REAL RANGE OF THE TEST
|
47 |
+
AND CLEARLY IDENTIFY REDS WITH LOW AND HIGH
|
48 |
+
Return the output in structured JSON format with all the information in lowercase to standardization.
|
49 |
+
And follow the JSON format provided and don't add any additional details in meta data or lab report other than that are specified
|
50 |
+
|
51 |
+
|
52 |
+
Extracted Text:
|
53 |
+
Dr. Onkar Test Sanjeevan Hospital\\n\\nMBBS, MD | Reg No: T123 12/4, Paud Road, Kothrud, Pune - 411023\\nPh: 0202526245, 8983390126, Timing: 09:15 AM -\\n02:30 PM, 05:30 PM - 09:30 PM, APPOINTMENTS\\nONLY | Closed: Monday,Friday\\n\\n \\n\\nPatient UID: 87 Report No: 00018\\n\\nName: AMAR SHAHA (Male} Rey, Date: 09-Jul-20\\n\\nAge 40 years Sample Collected At Hospital Lab\\n\\nAddress: MG Road, PUNE Sample Type/Quantity: Blood\\n\\nRef. By Doctor . Sample Collection D/T: 09-Jul-20, 9.50 AM\\nCr Test Result D/T: 09-Jul-20, 4:53 PM\\n\\n \\n \\n\\nDr. Amit Deshmukh\\n\\n \\n\\nHEMOGRAM\\n\\nINVESTIGATION RESULT UNIT REF, RANGE\\nHAEMOGLOBIN : 14 gms/dl 12.0 - 17.0\\nRBC COUNT E 44 millfeumm 4.1-5.1\\nHAEMOTOCRIT (PCV) E 30 % 32.0 - 47.0\\nMCV $ 78 fl 760 - 100.0\\nMCH H 3246 Py 260-320\\nMCHC | : 328 n% 315-3465 ,\\nROW ; 13.9 % 11.6-150\\nMPV ; 11.2 fn 68- 12.6\\nWBC COUNT : 4567 /eamm 4000 - 11000\\nDIFFERENTIAL COUNT\\nNEUTROPHILS |» : 56 %y 40-70\\nLYMPHOCYTES ; 20 % 20.0- 45.0\\nEOSINOPHILS . 4 « % 0-6\\nMONOCYTES : 5 %
|
54 |
+
|
55 |
+
Expected JSON format:
|
56 |
+
{
|
57 |
+
\"metadata\": {
|
58 |
+
\"patient_name\": \"Prasahsst Pawar\",
|
59 |
+
\"age\": \"20\",
|
60 |
+
\"gender\": \"Male\",
|
61 |
+
\"lab_name\": \"XYZ Diagnostics\",
|
62 |
+
\"report_date\": \"05-03-2025\"
|
63 |
+
},
|
64 |
+
\"lab_tests\": [
|
65 |
+
{
|
66 |
+
\"test_name\": \"hemoglobin\",
|
67 |
+
\"value\": \"14.2\",
|
68 |
+
\"unit\": \"g/dL\",
|
69 |
+
\"reference_range\": \"13.5 - 17.5 g/dL\"
|
70 |
},
|
71 |
+
{
|
72 |
+
\"test_name\": \"rbc count\",
|
73 |
+
\"value\": \"5.2\",
|
74 |
+
\"unit\": \"million/cu mm\",
|
75 |
+
\"reference_range\": \"4.1-5.1\"
|
76 |
+
},
|
77 |
+
{
|
78 |
+
\"test_name\": \"glucose\",
|
79 |
+
\"value\": \"65\",
|
80 |
+
\"unit\": \"mg/dL\",
|
81 |
+
\"reference_range\": \"70 - 110 mg/dL\"
|
82 |
+
}
|
83 |
+
],
|
84 |
+
\"reds\":{
|
85 |
+
\"low\":[\"glucose\"],
|
86 |
+
\"high\":[\"rbc count\"]
|
87 |
+
}
|
88 |
+
}"""),
|
89 |
+
],
|
90 |
+
),
|
91 |
+
types.Content(
|
92 |
+
role="model",
|
93 |
+
parts=[
|
94 |
+
types.Part.from_text(text="""{
|
95 |
+
\"lab_tests\": [
|
96 |
+
{
|
97 |
+
\"reference_range\": \"12.0 - 17.0\",
|
98 |
+
\"test_name\": \"haemoglobin\",
|
99 |
+
\"unit\": \"gms/dl\",
|
100 |
+
\"value\": \"14\"
|
101 |
+
},
|
102 |
+
{
|
103 |
+
\"reference_range\": \"4.1-5.1\",
|
104 |
+
\"test_name\": \"rbc count\",
|
105 |
+
\"unit\": \"mill/cu mm\",
|
106 |
+
\"value\": \"4.4\"
|
107 |
+
},
|
108 |
+
{
|
109 |
+
\"reference_range\": \"32.0 - 47.0\",
|
110 |
+
\"test_name\": \"haematocrit (pcv)\",
|
111 |
+
\"unit\": \"%\",
|
112 |
+
\"value\": \"30\"
|
113 |
+
},
|
114 |
+
{
|
115 |
+
\"reference_range\": \"76.0 - 100.0\",
|
116 |
+
\"test_name\": \"mcv\",
|
117 |
+
\"unit\": \"fl\",
|
118 |
+
\"value\": \"78\"
|
119 |
+
},
|
120 |
+
{
|
121 |
+
\"reference_range\": \"26.0-32.0\",
|
122 |
+
\"test_name\": \"mch\",
|
123 |
+
\"unit\": \"pg\",
|
124 |
+
\"value\": \"32.46\"
|
125 |
+
},
|
126 |
+
{
|
127 |
+
\"reference_range\": \"31.5-34.5\",
|
128 |
+
\"test_name\": \"mchc\",
|
129 |
+
\"unit\": \"%\",
|
130 |
+
\"value\": \"32.8\"
|
131 |
+
},
|
132 |
+
{
|
133 |
+
\"reference_range\": \"11.6-15.0\",
|
134 |
+
\"test_name\": \"rdw\",
|
135 |
+
\"unit\": \"%\",
|
136 |
+
\"value\": \"13.9\"
|
137 |
+
},
|
138 |
+
{
|
139 |
+
\"reference_range\": \"6.8- 12.6\",
|
140 |
+
\"test_name\": \"mpv\",
|
141 |
+
\"unit\": \"fn\",
|
142 |
+
\"value\": \"11.2\"
|
143 |
+
},
|
144 |
+
{
|
145 |
+
\"reference_range\": \"4000 - 11000\",
|
146 |
+
\"test_name\": \"wbc count\",
|
147 |
+
\"unit\": \"/cu mm\",
|
148 |
+
\"value\": \"4567\"
|
149 |
+
},
|
150 |
+
{
|
151 |
+
\"reference_range\": \"40-70\",
|
152 |
+
\"test_name\": \"neutrophils\",
|
153 |
+
\"unit\": \"%\",
|
154 |
+
\"value\": \"56\"
|
155 |
+
},
|
156 |
+
{
|
157 |
+
\"reference_range\": \"20.0- 45.0\",
|
158 |
+
\"test_name\": \"lymphocytes\",
|
159 |
+
\"unit\": \"%\",
|
160 |
+
\"value\": \"20\"
|
161 |
+
},
|
162 |
+
{
|
163 |
+
\"reference_range\": \"0-6\",
|
164 |
+
\"test_name\": \"eosinophils\",
|
165 |
+
\"unit\": \"%\",
|
166 |
+
\"value\": \"4\"
|
167 |
+
},
|
168 |
+
{
|
169 |
+
\"reference_range\": \"2-10\",
|
170 |
+
\"test_name\": \"monocytes\",
|
171 |
+
\"unit\": \"%\",
|
172 |
+
\"value\": \"5\"
|
173 |
}
|
174 |
+
],
|
175 |
+
\"metadata\": {
|
176 |
+
\"age\": \"40\",
|
177 |
+
\"gender\": \"male\",
|
178 |
+
\"lab_name\": \"sanjeevan hospital\",
|
179 |
+
\"patient_name\": \"amar shaha\",
|
180 |
+
\"report_date\": \"09-jul-20\"
|
181 |
+
},
|
182 |
+
\"reds\": {
|
183 |
+
\"high\": [
|
184 |
+
\"mch\"
|
185 |
+
],
|
186 |
+
\"low\": [
|
187 |
+
\"haematocrit (pcv)\"
|
188 |
+
]
|
189 |
+
}
|
190 |
+
}"""),
|
191 |
+
],
|
192 |
+
),
|
193 |
+
types.Content(
|
194 |
+
role="user",
|
195 |
+
parts=[
|
196 |
+
types.Part.from_text(text=extracted_text),
|
197 |
+
],
|
198 |
+
),
|
199 |
+
]
|
200 |
+
generate_content_config = types.GenerateContentConfig(
|
201 |
+
temperature=1,
|
202 |
+
top_p=0.95,
|
203 |
+
top_k=40,
|
204 |
+
max_output_tokens=8192,
|
205 |
+
response_mime_type="application/json",
|
206 |
+
response_schema=genai.types.Schema(
|
207 |
+
type = genai.types.Type.OBJECT,
|
208 |
+
enum = [],
|
209 |
+
required = ["metadata", "lab_tests", "reds"],
|
210 |
+
properties = {
|
211 |
+
"metadata": genai.types.Schema(
|
212 |
+
type = genai.types.Type.OBJECT,
|
213 |
+
enum = [],
|
214 |
+
required = ["patient_name", "age", "gender", "lab_name", "report_date"],
|
215 |
+
properties = {
|
216 |
+
"patient_name": genai.types.Schema(
|
217 |
+
type = genai.types.Type.STRING,
|
218 |
+
),
|
219 |
+
"age": genai.types.Schema(
|
220 |
+
type = genai.types.Type.STRING,
|
221 |
+
),
|
222 |
+
"gender": genai.types.Schema(
|
223 |
+
type = genai.types.Type.STRING,
|
224 |
+
),
|
225 |
+
"lab_name": genai.types.Schema(
|
226 |
+
type = genai.types.Type.STRING,
|
227 |
+
),
|
228 |
+
"report_date": genai.types.Schema(
|
229 |
+
type = genai.types.Type.STRING,
|
230 |
+
),
|
231 |
+
},
|
232 |
+
),
|
233 |
+
"lab_tests": genai.types.Schema(
|
234 |
+
type = genai.types.Type.ARRAY,
|
235 |
+
items = genai.types.Schema(
|
236 |
+
type = genai.types.Type.OBJECT,
|
237 |
+
enum = [],
|
238 |
+
required = ["test_name", "value", "unit", "reference_range"],
|
239 |
+
properties = {
|
240 |
+
"test_name": genai.types.Schema(
|
241 |
+
type = genai.types.Type.STRING,
|
242 |
+
),
|
243 |
+
"value": genai.types.Schema(
|
244 |
+
type = genai.types.Type.STRING,
|
245 |
+
),
|
246 |
+
"unit": genai.types.Schema(
|
247 |
+
type = genai.types.Type.STRING,
|
248 |
+
),
|
249 |
+
"reference_range": genai.types.Schema(
|
250 |
+
type = genai.types.Type.STRING,
|
251 |
+
),
|
252 |
+
},
|
253 |
+
),
|
254 |
+
),
|
255 |
+
"reds": genai.types.Schema(
|
256 |
+
type = genai.types.Type.OBJECT,
|
257 |
+
enum = [],
|
258 |
+
required = ["low", "high"],
|
259 |
+
properties = {
|
260 |
+
"low": genai.types.Schema(
|
261 |
+
type = genai.types.Type.ARRAY,
|
262 |
+
items = genai.types.Schema(
|
263 |
+
type = genai.types.Type.STRING,
|
264 |
+
),
|
265 |
+
),
|
266 |
+
"high": genai.types.Schema(
|
267 |
+
type = genai.types.Type.ARRAY,
|
268 |
+
items = genai.types.Schema(
|
269 |
+
type = genai.types.Type.STRING,
|
270 |
+
),
|
271 |
+
),
|
272 |
+
},
|
273 |
+
),
|
274 |
+
},
|
275 |
+
),
|
276 |
+
system_instruction=[
|
277 |
+
types.Part.from_text(text="""Always return the output as JSON only"""),
|
278 |
+
],
|
279 |
+
)
|
280 |
+
|
281 |
+
|
282 |
+
|
283 |
+
# for chunk in client.models.generate_content_stream(
|
284 |
+
# model=model,
|
285 |
+
# contents=contents,
|
286 |
+
# config=generate_content_config,
|
287 |
+
# ):
|
288 |
+
# print(chunk.text, end="")
|
289 |
+
|
290 |
+
|
291 |
+
response = client.models.generate_content(
|
292 |
+
model=model,
|
293 |
+
contents=contents,
|
294 |
+
config=generate_content_config,
|
295 |
+
)
|
296 |
+
|
297 |
+
json_response = response.text # The API should return JSON text
|
298 |
+
parsed_json = json.loads(json_response) # Convert JSON string to Python dictionary
|
299 |
+
|
300 |
+
return parsed_json
|
301 |
+
|
302 |
+
|
303 |
|
304 |
def showdata(lab_tests):
|
305 |
df = pd.DataFrame(lab_tests)
|
|
|
308 |
# Gradio interface function
|
309 |
def process_pdf(pdf):
|
310 |
text = read_pdf(pdf.name) # Extract text from PDF
|
311 |
+
output = generate(text) # Generate structured JSON
|
312 |
|
313 |
+
labtests=pd.DataFrame(output["lab_tests"])
|
314 |
metadata = json_data["metadata"]
|
315 |
+
reds=pd.DataFrame(output["reds"])
|
316 |
+
|
317 |
metadata_str = f"**Patient Name:** {metadata['patient_name']}\n\n" \
|
318 |
f"**Age:** {metadata['age']}\n\n" \
|
319 |
f"**Gender:** {metadata['gender']}\n\n" \
|
320 |
f"**Lab Name:** {metadata['lab_name']}\n\n" \
|
321 |
f"**Report Date:** {metadata['report_date']}"
|
322 |
|
323 |
+
return metadata_str, labtests, output
|
|
|
324 |
|
325 |
# Define Gradio interface
|
326 |
with gr.Blocks() as demo:
|
|
|
335 |
|
336 |
submit_btn.click(process_pdf, inputs=[pdf_input], outputs=[metadata_output, lab_test_output])
|
337 |
|
338 |
+
# Add API access but only expose JSON
|
339 |
+
demo.api(process_pdf, inputs=[gr.File(type="file")], outputs=gr.JSON(), route="/process")
|
340 |
+
|
341 |
+
|
342 |
# Launch the app
|
343 |
demo.launch()
|