Prashasst's picture
Update app.py
c937396 verified
raw
history blame
11.9 kB
import gradio as gr
import pandas as pd
import fitz # PyMuPDF
import pytesseract
from pdf2image import convert_from_path
import os
import base64
from google import genai
from google.genai import types
google_api=os.getenv("google_api")
def read_pdf(pdf_path):
text = ""
doc = fitz.open(pdf_path)
for page_num in range(len(doc)):
page = doc.load_page(page_num)
page_text = page.get_text("text").strip() # Extract text from page
# Extract Images for OCR
images = page.get_images(full=True) # Check if the page has images
ocr_text = ""
if images: # If images exist, process them
print(f"Page {page_num + 1} contains images, performing OCR...")
img_pages = convert_from_path(pdf_path, first_page=page_num + 1, last_page=page_num + 1)
for img in img_pages:
ocr_text += pytesseract.image_to_string(img).strip() + "\n"
# Combine both text extraction methods
combined_text = f"{page_text}\n{ocr_text}".strip()
if combined_text:
text += combined_text + "\n\n"
return text.strip()
def generate(extracted_text):
client = genai.Client(
api_key=google_api,
)
model = "gemini-2.0-flash"
contents = [
types.Content(
role="user",
parts=[
types.Part.from_text(text="""The following text is extracted from a medical lab report using OCR.
There may be errors such as missing decimals, incorrect test names, and incorrect reference ranges.
Please correct the errors and extract both metadata and structured lab test data.
ALWAYS MAKE SURE THAT THE VALUE ALIGNS WITH THE REAL RANGE OF THE TEST
AND CLEARLY IDENTIFY REDS WITH LOW AND HIGH
Return the output in structured JSON format with all the information in lowercase to standardization.
And follow the JSON format provided and don't add any additional details in meta data or lab report other than that are specified
Extracted Text:
Dr. Onkar Test Sanjeevan Hospital\\n\\nMBBS, MD | Reg No: T123 12/4, Paud Road, Kothrud, Pune - 411023\\nPh: 0202526245, 8983390126, Timing: 09:15 AM -\\n02:30 PM, 05:30 PM - 09:30 PM, APPOINTMENTS\\nONLY | Closed: Monday,Friday\\n\\n \\n\\nPatient UID: 87 Report No: 00018\\n\\nName: AMAR SHAHA (Male} Rey, Date: 09-Jul-20\\n\\nAge 40 years Sample Collected At Hospital Lab\\n\\nAddress: MG Road, PUNE Sample Type/Quantity: Blood\\n\\nRef. By Doctor . Sample Collection D/T: 09-Jul-20, 9.50 AM\\nCr Test Result D/T: 09-Jul-20, 4:53 PM\\n\\n \\n \\n\\nDr. Amit Deshmukh\\n\\n \\n\\nHEMOGRAM\\n\\nINVESTIGATION RESULT UNIT REF, RANGE\\nHAEMOGLOBIN : 14 gms/dl 12.0 - 17.0\\nRBC COUNT E 44 millfeumm 4.1-5.1\\nHAEMOTOCRIT (PCV) E 30 % 32.0 - 47.0\\nMCV $ 78 fl 760 - 100.0\\nMCH H 3246 Py 260-320\\nMCHC | : 328 n% 315-3465 ,\\nROW ; 13.9 % 11.6-150\\nMPV ; 11.2 fn 68- 12.6\\nWBC COUNT : 4567 /eamm 4000 - 11000\\nDIFFERENTIAL COUNT\\nNEUTROPHILS |» : 56 %y 40-70\\nLYMPHOCYTES ; 20 % 20.0- 45.0\\nEOSINOPHILS . 4 « % 0-6\\nMONOCYTES : 5 %
Expected JSON format:
{
\"metadata\": {
\"patient_name\": \"Prasahsst Pawar\",
\"age\": \"20\",
\"gender\": \"Male\",
\"lab_name\": \"XYZ Diagnostics\",
\"report_date\": \"05-03-2025\"
},
\"lab_tests\": [
{
\"test_name\": \"hemoglobin\",
\"value\": \"14.2\",
\"unit\": \"g/dL\",
\"reference_range\": \"13.5 - 17.5 g/dL\"
},
{
\"test_name\": \"rbc count\",
\"value\": \"5.2\",
\"unit\": \"million/cu mm\",
\"reference_range\": \"4.1-5.1\"
},
{
\"test_name\": \"glucose\",
\"value\": \"65\",
\"unit\": \"mg/dL\",
\"reference_range\": \"70 - 110 mg/dL\"
}
],
\"reds\":{
\"low\":[\"glucose\"],
\"high\":[\"rbc count\"]
}
}"""),
],
),
types.Content(
role="model",
parts=[
types.Part.from_text(text="""{
\"lab_tests\": [
{
\"reference_range\": \"12.0 - 17.0\",
\"test_name\": \"haemoglobin\",
\"unit\": \"gms/dl\",
\"value\": \"14\"
},
{
\"reference_range\": \"4.1-5.1\",
\"test_name\": \"rbc count\",
\"unit\": \"mill/cu mm\",
\"value\": \"4.4\"
},
{
\"reference_range\": \"32.0 - 47.0\",
\"test_name\": \"haematocrit (pcv)\",
\"unit\": \"%\",
\"value\": \"30\"
},
{
\"reference_range\": \"76.0 - 100.0\",
\"test_name\": \"mcv\",
\"unit\": \"fl\",
\"value\": \"78\"
},
{
\"reference_range\": \"26.0-32.0\",
\"test_name\": \"mch\",
\"unit\": \"pg\",
\"value\": \"32.46\"
},
{
\"reference_range\": \"31.5-34.5\",
\"test_name\": \"mchc\",
\"unit\": \"%\",
\"value\": \"32.8\"
},
{
\"reference_range\": \"11.6-15.0\",
\"test_name\": \"rdw\",
\"unit\": \"%\",
\"value\": \"13.9\"
},
{
\"reference_range\": \"6.8- 12.6\",
\"test_name\": \"mpv\",
\"unit\": \"fn\",
\"value\": \"11.2\"
},
{
\"reference_range\": \"4000 - 11000\",
\"test_name\": \"wbc count\",
\"unit\": \"/cu mm\",
\"value\": \"4567\"
},
{
\"reference_range\": \"40-70\",
\"test_name\": \"neutrophils\",
\"unit\": \"%\",
\"value\": \"56\"
},
{
\"reference_range\": \"20.0- 45.0\",
\"test_name\": \"lymphocytes\",
\"unit\": \"%\",
\"value\": \"20\"
},
{
\"reference_range\": \"0-6\",
\"test_name\": \"eosinophils\",
\"unit\": \"%\",
\"value\": \"4\"
},
{
\"reference_range\": \"2-10\",
\"test_name\": \"monocytes\",
\"unit\": \"%\",
\"value\": \"5\"
}
],
\"metadata\": {
\"age\": \"40\",
\"gender\": \"male\",
\"lab_name\": \"sanjeevan hospital\",
\"patient_name\": \"amar shaha\",
\"report_date\": \"09-jul-20\"
},
\"reds\": {
\"high\": [
\"mch\"
],
\"low\": [
\"haematocrit (pcv)\"
]
}
}"""),
],
),
types.Content(
role="user",
parts=[
types.Part.from_text(text=extracted_text),
],
),
]
generate_content_config = types.GenerateContentConfig(
temperature=1,
top_p=0.95,
top_k=40,
max_output_tokens=8192,
response_mime_type="application/json",
response_schema=genai.types.Schema(
type = genai.types.Type.OBJECT,
enum = [],
required = ["metadata", "lab_tests", "reds"],
properties = {
"metadata": genai.types.Schema(
type = genai.types.Type.OBJECT,
enum = [],
required = ["patient_name", "age", "gender", "lab_name", "report_date"],
properties = {
"patient_name": genai.types.Schema(
type = genai.types.Type.STRING,
),
"age": genai.types.Schema(
type = genai.types.Type.STRING,
),
"gender": genai.types.Schema(
type = genai.types.Type.STRING,
),
"lab_name": genai.types.Schema(
type = genai.types.Type.STRING,
),
"report_date": genai.types.Schema(
type = genai.types.Type.STRING,
),
},
),
"lab_tests": genai.types.Schema(
type = genai.types.Type.ARRAY,
items = genai.types.Schema(
type = genai.types.Type.OBJECT,
enum = [],
required = ["test_name", "value", "unit", "reference_range"],
properties = {
"test_name": genai.types.Schema(
type = genai.types.Type.STRING,
),
"value": genai.types.Schema(
type = genai.types.Type.STRING,
),
"unit": genai.types.Schema(
type = genai.types.Type.STRING,
),
"reference_range": genai.types.Schema(
type = genai.types.Type.STRING,
),
},
),
),
"reds": genai.types.Schema(
type = genai.types.Type.OBJECT,
enum = [],
required = ["low", "high"],
properties = {
"low": genai.types.Schema(
type = genai.types.Type.ARRAY,
items = genai.types.Schema(
type = genai.types.Type.STRING,
),
),
"high": genai.types.Schema(
type = genai.types.Type.ARRAY,
items = genai.types.Schema(
type = genai.types.Type.STRING,
),
),
},
),
},
),
system_instruction=[
types.Part.from_text(text="""Always return the output as JSON only"""),
],
)
# for chunk in client.models.generate_content_stream(
# model=model,
# contents=contents,
# config=generate_content_config,
# ):
# print(chunk.text, end="")
response = client.models.generate_content(
model=model,
contents=contents,
config=generate_content_config,
)
json_response = response.text # The API should return JSON text
parsed_json = json.loads(json_response) # Convert JSON string to Python dictionary
return parsed_json
# Gradio interface function
def process_pdf(pdf):
text = read_pdf(pdf) # Extract text from PDF
output = generate(text) # Generate structured JSON
return output
def show_to_UI(pdf):
output = process_pdf(pdf) # Call process_pdf to get JSON
# output= {"metadata": {"name": "John Doe", "age": 30}, "lab_tests": [{"test": "Blood Sugar", "value": "120 mg/dL"}]}
# Extract metadata
metadata = output["metadata"]
labtests = pd.DataFrame(output["lab_tests"])
reds = pd.DataFrame(output["reds"])
metadata_str = f"**Patient Name:** {metadata['patient_name']}\n\n" \
f"**Age:** {metadata['age']}\n\n" \
f"**Gender:** {metadata['gender']}\n\n" \
f"**Lab Name:** {metadata['lab_name']}\n\n" \
f"**Report Date:** {metadata['report_date']}"
return metadata_str, labtests, reds, output
# Define Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Medical Lab Report Processor")
with gr.Row():
pdf_input = gr.File(label="Upload PDF Report")
submit_btn = gr.Button("Process")
metadata_output = gr.Markdown("**Patient Name: Prashasst...**")
lab_test_output = gr.Dataframe(label="Lab Test Results")
reds_output = gr.Dataframe(label="Reds")
output_JSON = gr.JSON(label="Extracted Report") # Show JSON output
submit_btn.click(process_pdf, inputs=[pdf_input], outputs=[metadata_output, lab_test_output, reds_output,output_JSON])
demo.launch()