File size: 9,609 Bytes
371da07
 
22b21fc
 
 
 
371da07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import json
from config import google_api
import os
import base64
from google import genai
from google.genai import types


def process_text(extracted_text):
    """Lab Test and metadata entity recognition using gemini flash"""
    ''' Return type: JSON '''
    print("Performing Named Entity Recognition...")

    client = genai.Client(
        api_key=google_api,
    )

    model = "gemini-2.0-flash"
    contents = [
        types.Content(
            role="user",
            parts=[
                types.Part.from_text(text="""The following text is extracted from a medical lab report using OCR.
There may be errors such as missing decimals, incorrect test names, and incorrect reference ranges.
Please correct the errors and extract both metadata and structured lab test data.
ALWAYS MAKE SURE THAT THE VALUE ALIGNS WITH THE REAL RANGE OF THE TEST
AND CLEARLY IDENTIFY REDS WITH LOW AND HIGH
Return the output in structured JSON format with all the information in lowercase to standardization.
And follow the JSON format provided and don't add any additional details in meta data or lab report other than that are specified


Extracted Text:
Dr. Onkar Test Sanjeevan Hospital\\n\\nMBBS, MD | Reg No: T123 12/4, Paud Road, Kothrud, Pune - 411023\\nPh: 0202526245, 8983390126, Timing: 09:15 AM -\\n02:30 PM, 05:30 PM - 09:30 PM, APPOINTMENTS\\nONLY | Closed: Monday,Friday\\n\\n \\n\\nPatient UID: 87 Report No: 00018\\n\\nName: AMAR SHAHA (Male} Rey, Date: 09-Jul-20\\n\\nAge 40 years Sample Collected At Hospital Lab\\n\\nAddress: MG Road, PUNE Sample Type/Quantity: Blood\\n\\nRef. By Doctor . Sample Collection D/T: 09-Jul-20, 9.50 AM\\nCr Test Result D/T: 09-Jul-20, 4:53 PM\\n\\n \\n \\n\\nDr. Amit Deshmukh\\n\\n     \\n\\nHEMOGRAM\\n\\nINVESTIGATION RESULT UNIT REF, RANGE\\nHAEMOGLOBIN : 14 gms/dl 12.0 - 17.0\\nRBC COUNT E 44 millfeumm 4.1-5.1\\nHAEMOTOCRIT (PCV) E 30 % 32.0 - 47.0\\nMCV $ 78 fl 760 - 100.0\\nMCH H 3246 Py 260-320\\nMCHC | : 328 n% 315-3465 ,\\nROW ; 13.9 % 11.6-150\\nMPV ; 11.2 fn 68- 12.6\\nWBC COUNT : 4567 /eamm 4000 - 11000\\nDIFFERENTIAL COUNT\\nNEUTROPHILS |» : 56 %y 40-70\\nLYMPHOCYTES ; 20 % 20.0- 45.0\\nEOSINOPHILS . 4 « % 0-6\\nMONOCYTES : 5 %

Expected JSON format:
{
    \"metadata\": {
        \"patient_name\": \"Prasahsst Pawar\",
        \"age\": \"20\",
        \"gender\": \"Male\",
        \"lab_name\": \"XYZ Diagnostics\",
        \"report_date\": \"05-03-2025\"
    },
    \"lab_tests\": [
        {
            \"test_name\": \"hemoglobin\",
            \"value\": \"14.2\",
            \"unit\": \"g/dL\",
            \"reference_range\": \"13.5 - 17.5 g/dL\"
        },
        {
      \"test_name\": \"rbc count\",
      \"value\": \"5.2\",
      \"unit\": \"million/cu mm\",
      \"reference_range\": \"4.1-5.1\"
    },
        {
            \"test_name\": \"glucose\",
            \"value\": \"65\",
            \"unit\": \"mg/dL\",
            \"reference_range\": \"70 - 110 mg/dL\"
        }
    ],
\"reds\":{
    \"low\":[\"glucose\"],
    \"high\":[\"rbc count\"]
}
}"""),
            ],
        ),
        types.Content(
            role="model",
            parts=[
                types.Part.from_text(text="""{
  \"lab_tests\": [
    {
      \"reference_range\": \"12.0 - 17.0\",
      \"test_name\": \"haemoglobin\",
      \"unit\": \"gms/dl\",
      \"value\": \"14\"
    },
    {
      \"reference_range\": \"4.1-5.1\",
      \"test_name\": \"rbc count\",
      \"unit\": \"mill/cu mm\",
      \"value\": \"4.4\"
    },
    {
      \"reference_range\": \"32.0 - 47.0\",
      \"test_name\": \"haematocrit (pcv)\",
      \"unit\": \"%\",
      \"value\": \"30\"
    },
    {
      \"reference_range\": \"76.0 - 100.0\",
      \"test_name\": \"mcv\",
      \"unit\": \"fl\",
      \"value\": \"78\"
    },
    {
      \"reference_range\": \"26.0-32.0\",
      \"test_name\": \"mch\",
      \"unit\": \"pg\",
      \"value\": \"32.46\"
    },
    {
      \"reference_range\": \"31.5-34.5\",
      \"test_name\": \"mchc\",
      \"unit\": \"%\",
      \"value\": \"32.8\"
    },
    {
      \"reference_range\": \"11.6-15.0\",
      \"test_name\": \"rdw\",
      \"unit\": \"%\",
      \"value\": \"13.9\"
    },
    {
      \"reference_range\": \"6.8- 12.6\",
      \"test_name\": \"mpv\",
      \"unit\": \"fn\",
      \"value\": \"11.2\"
    },
    {
      \"reference_range\": \"4000 - 11000\",
      \"test_name\": \"wbc count\",
      \"unit\": \"/cu mm\",
      \"value\": \"4567\"
    },
    {
      \"reference_range\": \"40-70\",
      \"test_name\": \"neutrophils\",
      \"unit\": \"%\",
      \"value\": \"56\"
    },
    {
      \"reference_range\": \"20.0- 45.0\",
      \"test_name\": \"lymphocytes\",
      \"unit\": \"%\",
      \"value\": \"20\"
    },
    {
      \"reference_range\": \"0-6\",
      \"test_name\": \"eosinophils\",
      \"unit\": \"%\",
      \"value\": \"4\"
    },
    {
      \"reference_range\": \"2-10\",
      \"test_name\": \"monocytes\",
      \"unit\": \"%\",
      \"value\": \"5\"
    }
  ],
  \"metadata\": {
    \"age\": \"40\",
    \"gender\": \"male\",
    \"lab_name\": \"sanjeevan hospital\",
    \"patient_name\": \"amar shaha\",
    \"report_date\": \"09-jul-20\"
  },
  \"reds\": {
    \"high\": [
      \"mch\"
    ],
    \"low\": [
      \"haematocrit (pcv)\"
    ]
  }
}"""),
            ],
        ),
        types.Content(
            role="user",
            parts=[
                types.Part.from_text(text=extracted_text),
            ],
        ),
    ]
    generate_content_config = types.GenerateContentConfig(
        temperature=1,
        top_p=0.95,
        top_k=40,
        max_output_tokens=8192,
        response_mime_type="application/json",
        response_schema=genai.types.Schema(
            type = genai.types.Type.OBJECT,
            enum = [],
            required = ["metadata", "lab_tests", "reds"],
            properties = {
                "metadata": genai.types.Schema(
                    type = genai.types.Type.OBJECT,
                    enum = [],
                    required = ["patient_name", "age", "gender", "lab_name", "report_date"],
                    properties = {
                        "patient_name": genai.types.Schema(
                            type = genai.types.Type.STRING,
                        ),
                        "age": genai.types.Schema(
                            type = genai.types.Type.STRING,
                        ),
                        "gender": genai.types.Schema(
                            type = genai.types.Type.STRING,
                        ),
                        "lab_name": genai.types.Schema(
                            type = genai.types.Type.STRING,
                        ),
                        "report_date": genai.types.Schema(
                            type = genai.types.Type.STRING,
                        ),
                    },
                ),
                "lab_tests": genai.types.Schema(
                    type = genai.types.Type.ARRAY,
                    items = genai.types.Schema(
                        type = genai.types.Type.OBJECT,
                        enum = [],
                        required = ["test_name", "value", "unit", "reference_range"],
                        properties = {
                            "test_name": genai.types.Schema(
                                type = genai.types.Type.STRING,
                            ),
                            "value": genai.types.Schema(
                                type = genai.types.Type.STRING,
                            ),
                            "unit": genai.types.Schema(
                                type = genai.types.Type.STRING,
                            ),
                            "reference_range": genai.types.Schema(
                                type = genai.types.Type.STRING,
                            ),
                        },
                    ),
                ),
                "reds": genai.types.Schema(
                    type = genai.types.Type.OBJECT,
                    enum = [],
                    required = ["low", "high"],
                    properties = {
                        "low": genai.types.Schema(
                            type = genai.types.Type.ARRAY,
                            items = genai.types.Schema(
                                type = genai.types.Type.STRING,
                            ),
                        ),
                        "high": genai.types.Schema(
                            type = genai.types.Type.ARRAY,
                            items = genai.types.Schema(
                                type = genai.types.Type.STRING,
                            ),
                        ),
                    },
                ),
            },
        ),
        system_instruction=[
            types.Part.from_text(text="""Always return the output as JSON only"""),
        ],
    )



    # for chunk in client.models.generate_content_stream(
    #     model=model,
    #     contents=contents,
    #     config=generate_content_config,
    # ):
    #     print(chunk.text, end="")

    try:
        response = client.models.generate_content(
            model=model, contents=contents, config=generate_content_config
        )

        json_response = response.text  # Ensure response is JSON formatted
        parsed_json = json.loads(json_response)  # Convert JSON string to Python dictionary
        return parsed_json

    except json.JSONDecodeError:
        print("Error: Invalid JSON response from the model.")
        return None