Spaces:
Runtime error
Runtime error
/* | |
* Copyright (C) 2011-2012 Michael Niedermayer ([email protected]) | |
* Copyright (c) 2002 Fabrice Bellard | |
* | |
* This file is part of libswresample | |
* | |
* libswresample is free software; you can redistribute it and/or modify | |
* it under the terms of the GNU General Public License as published by | |
* the Free Software Foundation; either version 2 of the License, or | |
* (at your option) any later version. | |
* | |
* libswresample is distributed in the hope that it will be useful, | |
* but WITHOUT ANY WARRANTY; without even the implied warranty of | |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
* GNU General Public License for more details. | |
* | |
* You should have received a copy of the GNU General Public License | |
* along with libswresample; if not, write to the Free Software | |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
*/ | |
static double get(uint8_t *a[], int ch, int index, int ch_count, enum AVSampleFormat f){ | |
const uint8_t *p; | |
if(av_sample_fmt_is_planar(f)){ | |
f= av_get_alt_sample_fmt(f, 0); | |
p= a[ch]; | |
}else{ | |
p= a[0]; | |
index= ch + index*ch_count; | |
} | |
switch(f){ | |
case AV_SAMPLE_FMT_U8 : return ((const uint8_t*)p)[index]/127.0-1.0; | |
case AV_SAMPLE_FMT_S16: return ((const int16_t*)p)[index]/32767.0; | |
case AV_SAMPLE_FMT_S32: return ((const int32_t*)p)[index]/2147483647.0; | |
case AV_SAMPLE_FMT_FLT: return ((const float *)p)[index]; | |
case AV_SAMPLE_FMT_DBL: return ((const double *)p)[index]; | |
default: av_assert0(0); | |
} | |
} | |
static void set(uint8_t *a[], int ch, int index, int ch_count, enum AVSampleFormat f, double v){ | |
uint8_t *p; | |
if(av_sample_fmt_is_planar(f)){ | |
f= av_get_alt_sample_fmt(f, 0); | |
p= a[ch]; | |
}else{ | |
p= a[0]; | |
index= ch + index*ch_count; | |
} | |
switch(f){ | |
case AV_SAMPLE_FMT_U8 : ((uint8_t*)p)[index]= av_clip_uint8 (lrint((v+1.0)*127)); break; | |
case AV_SAMPLE_FMT_S16: ((int16_t*)p)[index]= av_clip_int16 (lrint(v*32767)); break; | |
case AV_SAMPLE_FMT_S32: ((int32_t*)p)[index]= av_clipl_int32(llrint(v*2147483647)); break; | |
case AV_SAMPLE_FMT_FLT: ((float *)p)[index]= v; break; | |
case AV_SAMPLE_FMT_DBL: ((double *)p)[index]= v; break; | |
default: av_assert2(0); | |
} | |
} | |
static void shift(uint8_t *a[], int index, int ch_count, enum AVSampleFormat f){ | |
int ch; | |
if(av_sample_fmt_is_planar(f)){ | |
f= av_get_alt_sample_fmt(f, 0); | |
for(ch= 0; ch<ch_count; ch++) | |
a[ch] += index*av_get_bytes_per_sample(f); | |
}else{ | |
a[0] += index*ch_count*av_get_bytes_per_sample(f); | |
} | |
} | |
static const enum AVSampleFormat formats[] = { | |
AV_SAMPLE_FMT_S16, | |
AV_SAMPLE_FMT_FLTP, | |
AV_SAMPLE_FMT_S16P, | |
AV_SAMPLE_FMT_FLT, | |
AV_SAMPLE_FMT_S32P, | |
AV_SAMPLE_FMT_S32, | |
AV_SAMPLE_FMT_U8P, | |
AV_SAMPLE_FMT_U8, | |
AV_SAMPLE_FMT_DBLP, | |
AV_SAMPLE_FMT_DBL, | |
}; | |
static const int rates[] = { | |
8000, | |
11025, | |
16000, | |
22050, | |
32000, | |
48000, | |
}; | |
static const AVChannelLayout layouts[]={ | |
AV_CHANNEL_LAYOUT_MONO , | |
AV_CHANNEL_LAYOUT_STEREO , | |
AV_CHANNEL_LAYOUT_2_1 , | |
AV_CHANNEL_LAYOUT_SURROUND , | |
AV_CHANNEL_LAYOUT_4POINT0 , | |
AV_CHANNEL_LAYOUT_2_2 , | |
AV_CHANNEL_LAYOUT_QUAD , | |
AV_CHANNEL_LAYOUT_5POINT0 , | |
AV_CHANNEL_LAYOUT_5POINT1 , | |
AV_CHANNEL_LAYOUT_5POINT0_BACK , | |
AV_CHANNEL_LAYOUT_5POINT1_BACK , | |
AV_CHANNEL_LAYOUT_7POINT0 , | |
AV_CHANNEL_LAYOUT_7POINT1 , | |
AV_CHANNEL_LAYOUT_7POINT1_WIDE , | |
}; | |
static void setup_array(uint8_t *out[SWR_CH_MAX], uint8_t *in, enum AVSampleFormat format, int samples){ | |
if(av_sample_fmt_is_planar(format)){ | |
int i; | |
int plane_size= av_get_bytes_per_sample(format&0xFF)*samples; | |
format&=0xFF; | |
for(i=0; i<SWR_CH_MAX; i++){ | |
out[i]= in + i*plane_size; | |
} | |
}else{ | |
out[0]= in; | |
} | |
} | |
static int cmp(const void *a, const void *b){ | |
return *(const int *)a - *(const int *)b; | |
} | |
static void audiogen(void *data, enum AVSampleFormat sample_fmt, | |
int channels, int sample_rate, int nb_samples) | |
{ | |
int i, ch, k; | |
double v, f, a, ampa; | |
double tabf1[SWR_CH_MAX]; | |
double tabf2[SWR_CH_MAX]; | |
double taba[SWR_CH_MAX]; | |
unsigned static rnd; | |
k = 0; | |
/* 1 second of single freq sinus at 1000 Hz */ | |
a = 0; | |
for (i = 0; i < 1 * sample_rate && k < nb_samples; i++, k++) { | |
v = sin(a) * 0.30; | |
for (ch = 0; ch < channels; ch++) | |
PUT_SAMPLE | |
a += M_PI * 1000.0 * 2.0 / sample_rate; | |
} | |
/* 1 second of varying frequency between 100 and 10000 Hz */ | |
a = 0; | |
for (i = 0; i < 1 * sample_rate && k < nb_samples; i++, k++) { | |
v = sin(a) * 0.30; | |
for (ch = 0; ch < channels; ch++) | |
PUT_SAMPLE | |
f = 100.0 + (((10000.0 - 100.0) * i) / sample_rate); | |
a += M_PI * f * 2.0 / sample_rate; | |
} | |
/* 0.5 second of low amplitude white noise */ | |
for (i = 0; i < sample_rate / 2 && k < nb_samples; i++, k++) { | |
v = dbl_rand(rnd) * 0.30; | |
for (ch = 0; ch < channels; ch++) | |
PUT_SAMPLE | |
} | |
/* 0.5 second of high amplitude white noise */ | |
for (i = 0; i < sample_rate / 2 && k < nb_samples; i++, k++) { | |
v = dbl_rand(rnd); | |
for (ch = 0; ch < channels; ch++) | |
PUT_SAMPLE | |
} | |
/* 1 second of unrelated ramps for each channel */ | |
for (ch = 0; ch < channels; ch++) { | |
taba[ch] = 0; | |
tabf1[ch] = 100 + uint_rand(rnd) % 5000; | |
tabf2[ch] = 100 + uint_rand(rnd) % 5000; | |
} | |
for (i = 0; i < 1 * sample_rate && k < nb_samples; i++, k++) { | |
for (ch = 0; ch < channels; ch++) { | |
v = sin(taba[ch]) * 0.30; | |
PUT_SAMPLE | |
f = tabf1[ch] + (((tabf2[ch] - tabf1[ch]) * i) / sample_rate); | |
taba[ch] += M_PI * f * 2.0 / sample_rate; | |
} | |
} | |
/* 2 seconds of 500 Hz with varying volume */ | |
a = 0; | |
ampa = 0; | |
for (i = 0; i < 2 * sample_rate && k < nb_samples; i++, k++) { | |
for (ch = 0; ch < channels; ch++) { | |
double amp = (1.0 + sin(ampa)) * 0.15; | |
if (ch & 1) | |
amp = 0.30 - amp; | |
v = sin(a) * amp; | |
PUT_SAMPLE | |
a += M_PI * 500.0 * 2.0 / sample_rate; | |
ampa += M_PI * 2.0 / sample_rate; | |
} | |
} | |
} | |
int main(int argc, char **argv){ | |
int in_sample_rate, out_sample_rate, ch ,i, flush_count; | |
AVChannelLayout in_ch_layout = { 0 }, out_ch_layout = { 0 }; | |
enum AVSampleFormat in_sample_fmt, out_sample_fmt; | |
uint8_t array_in[SAMPLES*8*8]; | |
uint8_t array_mid[SAMPLES*8*8*3]; | |
uint8_t array_out[SAMPLES*8*8+100]; | |
uint8_t *ain[SWR_CH_MAX]; | |
uint8_t *aout[SWR_CH_MAX]; | |
uint8_t *amid[SWR_CH_MAX]; | |
int flush_i=0; | |
int mode; | |
int num_tests = 10000; | |
uint32_t seed = 0; | |
uint32_t rand_seed = 0; | |
int remaining_tests[FF_ARRAY_ELEMS(rates) * FF_ARRAY_ELEMS(layouts) * FF_ARRAY_ELEMS(formats) * FF_ARRAY_ELEMS(layouts) * FF_ARRAY_ELEMS(formats)]; | |
int max_tests = FF_ARRAY_ELEMS(remaining_tests); | |
int test; | |
int specific_test= -1; | |
struct SwrContext * forw_ctx= NULL; | |
struct SwrContext *backw_ctx= NULL; | |
if (argc > 1) { | |
if (!strcmp(argv[1], "-h") || !strcmp(argv[1], "--help")) { | |
av_log(NULL, AV_LOG_INFO, "Usage: swresample-test [<num_tests>[ <test>]] \n" | |
"num_tests Default is %d\n", num_tests); | |
return 0; | |
} | |
num_tests = strtol(argv[1], NULL, 0); | |
if(num_tests < 0) { | |
num_tests = -num_tests; | |
rand_seed = time(0); | |
} | |
if(num_tests<= 0 || num_tests>max_tests) | |
num_tests = max_tests; | |
if(argc > 2) { | |
specific_test = strtol(argv[1], NULL, 0); | |
} | |
} | |
for(i=0; i<max_tests; i++) | |
remaining_tests[i] = i; | |
for(test=0; test<num_tests; test++){ | |
unsigned r; | |
uint_rand(seed); | |
r = (seed * (uint64_t)(max_tests - test)) >>32; | |
FFSWAP(int, remaining_tests[r], remaining_tests[max_tests - test - 1]); | |
} | |
qsort(remaining_tests + max_tests - num_tests, num_tests, sizeof(remaining_tests[0]), cmp); | |
in_sample_rate=16000; | |
for(test=0; test<num_tests; test++){ | |
char in_layout_string[256]; | |
char out_layout_string[256]; | |
unsigned vector= remaining_tests[max_tests - test - 1]; | |
int in_ch_count; | |
int out_count, mid_count, out_ch_count; | |
av_channel_layout_copy(&in_ch_layout, &layouts[vector % FF_ARRAY_ELEMS(layouts)]); vector /= FF_ARRAY_ELEMS(layouts); | |
av_channel_layout_copy(&out_ch_layout, &layouts[vector % FF_ARRAY_ELEMS(layouts)]); vector /= FF_ARRAY_ELEMS(layouts); | |
in_sample_fmt = formats[vector % FF_ARRAY_ELEMS(formats)]; vector /= FF_ARRAY_ELEMS(formats); | |
out_sample_fmt = formats[vector % FF_ARRAY_ELEMS(formats)]; vector /= FF_ARRAY_ELEMS(formats); | |
out_sample_rate = rates [vector % FF_ARRAY_ELEMS(rates )]; vector /= FF_ARRAY_ELEMS(rates); | |
av_assert0(!vector); | |
if(specific_test == 0){ | |
if(out_sample_rate != in_sample_rate || av_channel_layout_compare(&in_ch_layout, &out_ch_layout)) | |
continue; | |
} | |
in_ch_count= in_ch_layout.nb_channels; | |
out_ch_count= out_ch_layout.nb_channels; | |
av_channel_layout_describe(&in_ch_layout, in_layout_string, sizeof( in_layout_string)); | |
av_channel_layout_describe(&out_ch_layout, out_layout_string, sizeof(out_layout_string)); | |
fprintf(stderr, "TEST: %s->%s, rate:%5d->%5d, fmt:%s->%s\n", | |
in_layout_string, out_layout_string, | |
in_sample_rate, out_sample_rate, | |
av_get_sample_fmt_name(in_sample_fmt), av_get_sample_fmt_name(out_sample_fmt)); | |
if (swr_alloc_set_opts2(&forw_ctx, &out_ch_layout, out_sample_fmt, out_sample_rate, | |
&in_ch_layout, in_sample_fmt, in_sample_rate, | |
0, 0) < 0) { | |
fprintf(stderr, "Failed to init forw_cts\n"); | |
return 1; | |
} | |
if (swr_alloc_set_opts2(&backw_ctx, &in_ch_layout, in_sample_fmt, in_sample_rate, | |
&out_ch_layout, out_sample_fmt, out_sample_rate, | |
0, 0) < 0) { | |
fprintf(stderr, "Failed to init backw_ctx\n"); | |
return 1; | |
} | |
if(swr_init( forw_ctx) < 0) | |
fprintf(stderr, "swr_init(->) failed\n"); | |
if(swr_init(backw_ctx) < 0) | |
fprintf(stderr, "swr_init(<-) failed\n"); | |
//FIXME test planar | |
setup_array(ain , array_in , in_sample_fmt, SAMPLES); | |
setup_array(amid, array_mid, out_sample_fmt, 3*SAMPLES); | |
setup_array(aout, array_out, in_sample_fmt , SAMPLES); | |
for(ch=0; ch<in_ch_count; ch++){ | |
for(i=0; i<SAMPLES; i++) | |
set(ain, ch, i, in_ch_count, in_sample_fmt, sin(i*i*3/SAMPLES)); | |
} | |
audiogen(ain, in_sample_fmt, in_ch_count, SAMPLES/6+1, SAMPLES); | |
mode = uint_rand(rand_seed) % 3; | |
if(mode==0 /*|| out_sample_rate == in_sample_rate*/) { | |
mid_count= swr_convert(forw_ctx, amid, 3*SAMPLES, (const uint8_t **)ain, SAMPLES); | |
} else if(mode==1){ | |
mid_count= swr_convert(forw_ctx, amid, 0, (const uint8_t **)ain, SAMPLES); | |
mid_count+=swr_convert(forw_ctx, amid, 3*SAMPLES, (const uint8_t **)ain, 0); | |
} else { | |
int tmp_count; | |
mid_count= swr_convert(forw_ctx, amid, 0, (const uint8_t **)ain, 1); | |
av_assert0(mid_count==0); | |
shift(ain, 1, in_ch_count, in_sample_fmt); | |
mid_count+=swr_convert(forw_ctx, amid, 3*SAMPLES, (const uint8_t **)ain, 0); | |
shift(amid, mid_count, out_ch_count, out_sample_fmt); tmp_count = mid_count; | |
mid_count+=swr_convert(forw_ctx, amid, 2, (const uint8_t **)ain, 2); | |
shift(amid, mid_count-tmp_count, out_ch_count, out_sample_fmt); tmp_count = mid_count; | |
shift(ain, 2, in_ch_count, in_sample_fmt); | |
mid_count+=swr_convert(forw_ctx, amid, 1, (const uint8_t **)ain, SAMPLES-3); | |
shift(amid, mid_count-tmp_count, out_ch_count, out_sample_fmt); tmp_count = mid_count; | |
shift(ain, -3, in_ch_count, in_sample_fmt); | |
mid_count+=swr_convert(forw_ctx, amid, 3*SAMPLES, (const uint8_t **)ain, 0); | |
shift(amid, -tmp_count, out_ch_count, out_sample_fmt); | |
} | |
out_count= swr_convert(backw_ctx,aout, SAMPLES, (const uint8_t **)amid, mid_count); | |
for(ch=0; ch<in_ch_count; ch++){ | |
double sse, maxdiff=0; | |
double sum_aa= 0; | |
double sum_bb= 0; | |
double sum_ab= 0; | |
for(i=0; i<out_count; i++){ | |
double a= get(ain , ch, i, in_ch_count, in_sample_fmt); | |
double b= get(aout, ch, i, in_ch_count, in_sample_fmt); | |
sum_aa+= a*a; | |
sum_bb+= b*b; | |
sum_ab+= a*b; | |
maxdiff= FFMAX(maxdiff, fabs(a-b)); | |
} | |
sse= sum_aa + sum_bb - 2*sum_ab; | |
if(sse < 0 && sse > -0.00001) sse=0; //fix rounding error | |
fprintf(stderr, "[e:%f c:%f max:%f] len:%5d\n", out_count ? sqrt(sse/out_count) : 0, sum_ab/(sqrt(sum_aa*sum_bb)), maxdiff, out_count); | |
} | |
flush_i++; | |
flush_i%=21; | |
flush_count = swr_convert(backw_ctx,aout, flush_i, 0, 0); | |
shift(aout, flush_i, in_ch_count, in_sample_fmt); | |
flush_count+= swr_convert(backw_ctx,aout, SAMPLES-flush_i, 0, 0); | |
shift(aout, -flush_i, in_ch_count, in_sample_fmt); | |
if(flush_count){ | |
for(ch=0; ch<in_ch_count; ch++){ | |
double sse, maxdiff=0; | |
double sum_aa= 0; | |
double sum_bb= 0; | |
double sum_ab= 0; | |
for(i=0; i<flush_count; i++){ | |
double a= get(ain , ch, i+out_count, in_ch_count, in_sample_fmt); | |
double b= get(aout, ch, i, in_ch_count, in_sample_fmt); | |
sum_aa+= a*a; | |
sum_bb+= b*b; | |
sum_ab+= a*b; | |
maxdiff= FFMAX(maxdiff, fabs(a-b)); | |
} | |
sse= sum_aa + sum_bb - 2*sum_ab; | |
if(sse < 0 && sse > -0.00001) sse=0; //fix rounding error | |
fprintf(stderr, "[e:%f c:%f max:%f] len:%5d F:%3d\n", sqrt(sse/flush_count), sum_ab/(sqrt(sum_aa*sum_bb)), maxdiff, flush_count, flush_i); | |
} | |
} | |
fprintf(stderr, "\n"); | |
} | |
return 0; | |
} | |