Spaces:
Runtime error
Runtime error
/* | |
* AAC encoder utilities | |
* Copyright (C) 2015 Rostislav Pehlivanov | |
* | |
* This file is part of FFmpeg. | |
* | |
* FFmpeg is free software; you can redistribute it and/or | |
* modify it under the terms of the GNU Lesser General Public | |
* License as published by the Free Software Foundation; either | |
* version 2.1 of the License, or (at your option) any later version. | |
* | |
* FFmpeg is distributed in the hope that it will be useful, | |
* but WITHOUT ANY WARRANTY; without even the implied warranty of | |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
* Lesser General Public License for more details. | |
* | |
* You should have received a copy of the GNU Lesser General Public | |
* License along with FFmpeg; if not, write to the Free Software | |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
*/ | |
/** | |
* @file | |
* AAC encoder utilities | |
* @author Rostislav Pehlivanov ( atomnuker gmail com ) | |
*/ | |
static inline void abs_pow34_v(float *out, const float *in, const int size) | |
{ | |
int i; | |
for (i = 0; i < size; i++) { | |
float a = fabsf(in[i]); | |
out[i] = sqrtf(a * sqrtf(a)); | |
} | |
} | |
static inline float pos_pow34(float a) | |
{ | |
return sqrtf(a * sqrtf(a)); | |
} | |
/** | |
* Quantize one coefficient. | |
* @return absolute value of the quantized coefficient | |
* @see 3GPP TS26.403 5.6.2 "Scalefactor determination" | |
*/ | |
static inline int quant(float coef, const float Q, const float rounding) | |
{ | |
float a = coef * Q; | |
return sqrtf(a * sqrtf(a)) + rounding; | |
} | |
static inline void quantize_bands(int *out, const float *in, const float *scaled, | |
int size, int is_signed, int maxval, const float Q34, | |
const float rounding) | |
{ | |
int i; | |
for (i = 0; i < size; i++) { | |
float qc = scaled[i] * Q34; | |
int tmp = (int)FFMIN(qc + rounding, (float)maxval); | |
if (is_signed && in[i] < 0.0f) { | |
tmp = -tmp; | |
} | |
out[i] = tmp; | |
} | |
} | |
static inline float find_max_val(int group_len, int swb_size, const float *scaled) | |
{ | |
float maxval = 0.0f; | |
int w2, i; | |
for (w2 = 0; w2 < group_len; w2++) { | |
for (i = 0; i < swb_size; i++) { | |
maxval = FFMAX(maxval, scaled[w2*128+i]); | |
} | |
} | |
return maxval; | |
} | |
static inline int find_min_book(float maxval, int sf) | |
{ | |
float Q34 = ff_aac_pow34sf_tab[POW_SF2_ZERO - sf + SCALE_ONE_POS - SCALE_DIV_512]; | |
int qmaxval, cb; | |
qmaxval = maxval * Q34 + C_QUANT; | |
if (qmaxval >= (FF_ARRAY_ELEMS(aac_maxval_cb))) | |
cb = 11; | |
else | |
cb = aac_maxval_cb[qmaxval]; | |
return cb; | |
} | |
static inline float find_form_factor(int group_len, int swb_size, float thresh, | |
const float *scaled, float nzslope) { | |
const float iswb_size = 1.0f / swb_size; | |
const float iswb_sizem1 = 1.0f / (swb_size - 1); | |
const float ethresh = thresh; | |
float form = 0.0f, weight = 0.0f; | |
int w2, i; | |
for (w2 = 0; w2 < group_len; w2++) { | |
float e = 0.0f, e2 = 0.0f, var = 0.0f, maxval = 0.0f; | |
float nzl = 0; | |
for (i = 0; i < swb_size; i++) { | |
float s = fabsf(scaled[w2*128+i]); | |
maxval = FFMAX(maxval, s); | |
e += s; | |
e2 += s *= s; | |
/* We really don't want a hard non-zero-line count, since | |
* even below-threshold lines do add up towards band spectral power. | |
* So, fall steeply towards zero, but smoothly | |
*/ | |
if (s >= ethresh) { | |
nzl += 1.0f; | |
} else { | |
if (nzslope == 2.f) | |
nzl += (s / ethresh) * (s / ethresh); | |
else | |
nzl += ff_fast_powf(s / ethresh, nzslope); | |
} | |
} | |
if (e2 > thresh) { | |
float frm; | |
e *= iswb_size; | |
/** compute variance */ | |
for (i = 0; i < swb_size; i++) { | |
float d = fabsf(scaled[w2*128+i]) - e; | |
var += d*d; | |
} | |
var = sqrtf(var * iswb_sizem1); | |
e2 *= iswb_size; | |
frm = e / FFMIN(e+4*var,maxval); | |
form += e2 * sqrtf(frm) / FFMAX(0.5f,nzl); | |
weight += e2; | |
} | |
} | |
if (weight > 0) { | |
return form / weight; | |
} else { | |
return 1.0f; | |
} | |
} | |
/** Return the minimum scalefactor where the quantized coef does not clip. */ | |
static inline uint8_t coef2minsf(float coef) | |
{ | |
return av_clip_uint8(log2f(coef)*4 - 69 + SCALE_ONE_POS - SCALE_DIV_512); | |
} | |
/** Return the maximum scalefactor where the quantized coef is not zero. */ | |
static inline uint8_t coef2maxsf(float coef) | |
{ | |
return av_clip_uint8(log2f(coef)*4 + 6 + SCALE_ONE_POS - SCALE_DIV_512); | |
} | |
/* | |
* Returns the closest possible index to an array of float values, given a value. | |
*/ | |
static inline int quant_array_idx(const float val, const float *arr, const int num) | |
{ | |
int i, index = 0; | |
float quant_min_err = INFINITY; | |
for (i = 0; i < num; i++) { | |
float error = (val - arr[i])*(val - arr[i]); | |
if (error < quant_min_err) { | |
quant_min_err = error; | |
index = i; | |
} | |
} | |
return index; | |
} | |
/** | |
* approximates exp10f(-3.0f*(0.5f + 0.5f * cosf(FFMIN(b,15.5f) / 15.5f))) | |
*/ | |
static av_always_inline float bval2bmax(float b) | |
{ | |
return 0.001f + 0.0035f * (b*b*b) / (15.5f*15.5f*15.5f); | |
} | |
/* | |
* Compute a nextband map to be used with SF delta constraint utilities. | |
* The nextband array should contain 128 elements, and positions that don't | |
* map to valid, nonzero bands of the form w*16+g (with w being the initial | |
* window of the window group, only) are left indetermined. | |
*/ | |
static inline void ff_init_nextband_map(const SingleChannelElement *sce, uint8_t *nextband) | |
{ | |
unsigned char prevband = 0; | |
int w, g; | |
/** Just a safe default */ | |
for (g = 0; g < 128; g++) | |
nextband[g] = g; | |
/** Now really navigate the nonzero band chain */ | |
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { | |
for (g = 0; g < sce->ics.num_swb; g++) { | |
if (!sce->zeroes[w*16+g] && sce->band_type[w*16+g] < RESERVED_BT) | |
prevband = nextband[prevband] = w*16+g; | |
} | |
} | |
nextband[prevband] = prevband; /* terminate */ | |
} | |
/* | |
* Updates nextband to reflect a removed band (equivalent to | |
* calling ff_init_nextband_map after marking a band as zero) | |
*/ | |
static inline void ff_nextband_remove(uint8_t *nextband, int prevband, int band) | |
{ | |
nextband[prevband] = nextband[band]; | |
} | |
/* | |
* Checks whether the specified band could be removed without inducing | |
* scalefactor delta that violates SF delta encoding constraints. | |
* prev_sf has to be the scalefactor of the previous nonzero, nonspecial | |
* band, in encoding order, or negative if there was no such band. | |
*/ | |
static inline int ff_sfdelta_can_remove_band(const SingleChannelElement *sce, | |
const uint8_t *nextband, int prev_sf, int band) | |
{ | |
return prev_sf >= 0 | |
&& sce->sf_idx[nextband[band]] >= (prev_sf - SCALE_MAX_DIFF) | |
&& sce->sf_idx[nextband[band]] <= (prev_sf + SCALE_MAX_DIFF); | |
} | |
/* | |
* Checks whether the specified band's scalefactor could be replaced | |
* with another one without violating SF delta encoding constraints. | |
* prev_sf has to be the scalefactor of the previous nonzero, nonsepcial | |
* band, in encoding order, or negative if there was no such band. | |
*/ | |
static inline int ff_sfdelta_can_replace(const SingleChannelElement *sce, | |
const uint8_t *nextband, int prev_sf, int new_sf, int band) | |
{ | |
return new_sf >= (prev_sf - SCALE_MAX_DIFF) | |
&& new_sf <= (prev_sf + SCALE_MAX_DIFF) | |
&& sce->sf_idx[nextband[band]] >= (new_sf - SCALE_MAX_DIFF) | |
&& sce->sf_idx[nextband[band]] <= (new_sf + SCALE_MAX_DIFF); | |
} | |
/** | |
* linear congruential pseudorandom number generator | |
* | |
* @param previous_val pointer to the current state of the generator | |
* | |
* @return Returns a 32-bit pseudorandom integer | |
*/ | |
static av_always_inline int lcg_random(unsigned previous_val) | |
{ | |
union { unsigned u; int s; } v = { previous_val * 1664525u + 1013904223 }; | |
return v.s; | |
} | |