Spaces:
Runtime error
Runtime error
/* | |
* AAC encoder twoloop coder | |
* Copyright (C) 2008-2009 Konstantin Shishkov | |
* | |
* This file is part of FFmpeg. | |
* | |
* FFmpeg is free software; you can redistribute it and/or | |
* modify it under the terms of the GNU Lesser General Public | |
* License as published by the Free Software Foundation; either | |
* version 2.1 of the License, or (at your option) any later version. | |
* | |
* FFmpeg is distributed in the hope that it will be useful, | |
* but WITHOUT ANY WARRANTY; without even the implied warranty of | |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
* Lesser General Public License for more details. | |
* | |
* You should have received a copy of the GNU Lesser General Public | |
* License along with FFmpeg; if not, write to the Free Software | |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
*/ | |
/** | |
* @file | |
* AAC encoder twoloop coder | |
* @author Konstantin Shishkov, Claudio Freire | |
*/ | |
/** | |
* This file contains a template for the twoloop coder function. | |
* It needs to be provided, externally, as an already included declaration, | |
* the following functions from aacenc_quantization/util.h. They're not included | |
* explicitly here to make it possible to provide alternative implementations: | |
* - quantize_band_cost | |
* - abs_pow34_v | |
* - find_max_val | |
* - find_min_book | |
* - find_form_factor | |
*/ | |
/** Frequency in Hz for lower limit of noise substitution **/ | |
/* Reflects the cost to change codebooks */ | |
static inline int ff_pns_bits(SingleChannelElement *sce, int w, int g) | |
{ | |
return (!g || !sce->zeroes[w*16+g-1] || !sce->can_pns[w*16+g-1]) ? 9 : 5; | |
} | |
/** | |
* two-loop quantizers search taken from ISO 13818-7 Appendix C | |
*/ | |
static void search_for_quantizers_twoloop(AVCodecContext *avctx, | |
AACEncContext *s, | |
SingleChannelElement *sce, | |
const float lambda) | |
{ | |
int start = 0, i, w, w2, g, recomprd; | |
int destbits = avctx->bit_rate * 1024.0 / avctx->sample_rate | |
/ ((avctx->flags & AV_CODEC_FLAG_QSCALE) ? 2.0f : avctx->ch_layout.nb_channels) | |
* (lambda / 120.f); | |
int refbits = destbits; | |
int toomanybits, toofewbits; | |
char nzs[128]; | |
uint8_t nextband[128]; | |
int maxsf[128], minsf[128]; | |
float dists[128] = { 0 }, qenergies[128] = { 0 }, uplims[128], euplims[128], energies[128]; | |
float maxvals[128], spread_thr_r[128]; | |
float min_spread_thr_r, max_spread_thr_r; | |
/** | |
* rdlambda controls the maximum tolerated distortion. Twoloop | |
* will keep iterating until it fails to lower it or it reaches | |
* ulimit * rdlambda. Keeping it low increases quality on difficult | |
* signals, but lower it too much, and bits will be taken from weak | |
* signals, creating "holes". A balance is necessary. | |
* rdmax and rdmin specify the relative deviation from rdlambda | |
* allowed for tonality compensation | |
*/ | |
float rdlambda = av_clipf(2.0f * 120.f / lambda, 0.0625f, 16.0f); | |
const float nzslope = 1.5f; | |
float rdmin = 0.03125f; | |
float rdmax = 1.0f; | |
/** | |
* sfoffs controls an offset of optmium allocation that will be | |
* applied based on lambda. Keep it real and modest, the loop | |
* will take care of the rest, this just accelerates convergence | |
*/ | |
float sfoffs = av_clipf(log2f(120.0f / lambda) * 4.0f, -5, 10); | |
int fflag, minscaler, maxscaler, nminscaler; | |
int its = 0; | |
int maxits = 30; | |
int allz = 0; | |
int tbits; | |
int cutoff = 1024; | |
int pns_start_pos; | |
int prev; | |
/** | |
* zeroscale controls a multiplier of the threshold, if band energy | |
* is below this, a zero is forced. Keep it lower than 1, unless | |
* low lambda is used, because energy < threshold doesn't mean there's | |
* no audible signal outright, it's just energy. Also make it rise | |
* slower than rdlambda, as rdscale has due compensation with | |
* noisy band depriorization below, whereas zeroing logic is rather dumb | |
*/ | |
float zeroscale; | |
if (lambda > 120.f) { | |
zeroscale = av_clipf(powf(120.f / lambda, 0.25f), 0.0625f, 1.0f); | |
} else { | |
zeroscale = 1.f; | |
} | |
if (s->psy.bitres.alloc >= 0) { | |
/** | |
* Psy granted us extra bits to use, from the reservoire | |
* adjust for lambda except what psy already did | |
*/ | |
destbits = s->psy.bitres.alloc | |
* (lambda / (avctx->global_quality ? avctx->global_quality : 120)); | |
} | |
if (avctx->flags & AV_CODEC_FLAG_QSCALE) { | |
/** | |
* Constant Q-scale doesn't compensate MS coding on its own | |
* No need to be overly precise, this only controls RD | |
* adjustment CB limits when going overboard | |
*/ | |
if (s->options.mid_side && s->cur_type == TYPE_CPE) | |
destbits *= 2; | |
/** | |
* When using a constant Q-scale, don't adjust bits, just use RD | |
* Don't let it go overboard, though... 8x psy target is enough | |
*/ | |
toomanybits = 5800; | |
toofewbits = destbits / 16; | |
/** Don't offset scalers, just RD */ | |
sfoffs = sce->ics.num_windows - 1; | |
rdlambda = sqrtf(rdlambda); | |
/** search further */ | |
maxits *= 2; | |
} else { | |
/* When using ABR, be strict, but a reasonable leeway is | |
* critical to allow RC to smoothly track desired bitrate | |
* without sudden quality drops that cause audible artifacts. | |
* Symmetry is also desirable, to avoid systematic bias. | |
*/ | |
toomanybits = destbits + destbits/8; | |
toofewbits = destbits - destbits/8; | |
sfoffs = 0; | |
rdlambda = sqrtf(rdlambda); | |
} | |
/** and zero out above cutoff frequency */ | |
{ | |
int wlen = 1024 / sce->ics.num_windows; | |
int bandwidth; | |
/** | |
* Scale, psy gives us constant quality, this LP only scales | |
* bitrate by lambda, so we save bits on subjectively unimportant HF | |
* rather than increase quantization noise. Adjust nominal bitrate | |
* to effective bitrate according to encoding parameters, | |
* AAC_CUTOFF_FROM_BITRATE is calibrated for effective bitrate. | |
*/ | |
float rate_bandwidth_multiplier = 1.5f; | |
int frame_bit_rate = (avctx->flags & AV_CODEC_FLAG_QSCALE) | |
? (refbits * rate_bandwidth_multiplier * avctx->sample_rate / 1024) | |
: (avctx->bit_rate / avctx->ch_layout.nb_channels); | |
/** Compensate for extensions that increase efficiency */ | |
if (s->options.pns || s->options.intensity_stereo) | |
frame_bit_rate *= 1.15f; | |
if (avctx->cutoff > 0) { | |
bandwidth = avctx->cutoff; | |
} else { | |
bandwidth = FFMAX(3000, AAC_CUTOFF_FROM_BITRATE(frame_bit_rate, 1, avctx->sample_rate)); | |
s->psy.cutoff = bandwidth; | |
} | |
cutoff = bandwidth * 2 * wlen / avctx->sample_rate; | |
pns_start_pos = NOISE_LOW_LIMIT * 2 * wlen / avctx->sample_rate; | |
} | |
/** | |
* for values above this the decoder might end up in an endless loop | |
* due to always having more bits than what can be encoded. | |
*/ | |
destbits = FFMIN(destbits, 5800); | |
toomanybits = FFMIN(toomanybits, 5800); | |
toofewbits = FFMIN(toofewbits, 5800); | |
/** | |
* XXX: some heuristic to determine initial quantizers will reduce search time | |
* determine zero bands and upper distortion limits | |
*/ | |
min_spread_thr_r = -1; | |
max_spread_thr_r = -1; | |
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { | |
for (g = start = 0; g < sce->ics.num_swb; start += sce->ics.swb_sizes[g++]) { | |
int nz = 0; | |
float uplim = 0.0f, energy = 0.0f, spread = 0.0f; | |
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { | |
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g]; | |
if (start >= cutoff || band->energy <= (band->threshold * zeroscale) || band->threshold == 0.0f) { | |
sce->zeroes[(w+w2)*16+g] = 1; | |
continue; | |
} | |
nz = 1; | |
} | |
if (!nz) { | |
uplim = 0.0f; | |
} else { | |
nz = 0; | |
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { | |
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g]; | |
if (band->energy <= (band->threshold * zeroscale) || band->threshold == 0.0f) | |
continue; | |
uplim += band->threshold; | |
energy += band->energy; | |
spread += band->spread; | |
nz++; | |
} | |
} | |
uplims[w*16+g] = uplim; | |
energies[w*16+g] = energy; | |
nzs[w*16+g] = nz; | |
sce->zeroes[w*16+g] = !nz; | |
allz |= nz; | |
if (nz && sce->can_pns[w*16+g]) { | |
spread_thr_r[w*16+g] = energy * nz / (uplim * spread); | |
if (min_spread_thr_r < 0) { | |
min_spread_thr_r = max_spread_thr_r = spread_thr_r[w*16+g]; | |
} else { | |
min_spread_thr_r = FFMIN(min_spread_thr_r, spread_thr_r[w*16+g]); | |
max_spread_thr_r = FFMAX(max_spread_thr_r, spread_thr_r[w*16+g]); | |
} | |
} | |
} | |
} | |
/** Compute initial scalers */ | |
minscaler = 65535; | |
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { | |
for (g = 0; g < sce->ics.num_swb; g++) { | |
if (sce->zeroes[w*16+g]) { | |
sce->sf_idx[w*16+g] = SCALE_ONE_POS; | |
continue; | |
} | |
/** | |
* log2f-to-distortion ratio is, technically, 2 (1.5db = 4, but it's power vs level so it's 2). | |
* But, as offsets are applied, low-frequency signals are too sensitive to the induced distortion, | |
* so we make scaling more conservative by choosing a lower log2f-to-distortion ratio, and thus | |
* more robust. | |
*/ | |
sce->sf_idx[w*16+g] = av_clip( | |
SCALE_ONE_POS | |
+ 1.75*log2f(FFMAX(0.00125f,uplims[w*16+g]) / sce->ics.swb_sizes[g]) | |
+ sfoffs, | |
60, SCALE_MAX_POS); | |
minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]); | |
} | |
} | |
/** Clip */ | |
minscaler = av_clip(minscaler, SCALE_ONE_POS - SCALE_DIV_512, SCALE_MAX_POS - SCALE_DIV_512); | |
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) | |
for (g = 0; g < sce->ics.num_swb; g++) | |
if (!sce->zeroes[w*16+g]) | |
sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF - 1); | |
if (!allz) | |
return; | |
s->abs_pow34(s->scoefs, sce->coeffs, 1024); | |
ff_quantize_band_cost_cache_init(s); | |
for (i = 0; i < sizeof(minsf) / sizeof(minsf[0]); ++i) | |
minsf[i] = 0; | |
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { | |
start = w*128; | |
for (g = 0; g < sce->ics.num_swb; g++) { | |
const float *scaled = s->scoefs + start; | |
int minsfidx; | |
maxvals[w*16+g] = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], scaled); | |
if (maxvals[w*16+g] > 0) { | |
minsfidx = coef2minsf(maxvals[w*16+g]); | |
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) | |
minsf[(w+w2)*16+g] = minsfidx; | |
} | |
start += sce->ics.swb_sizes[g]; | |
} | |
} | |
/** | |
* Scale uplims to match rate distortion to quality | |
* bu applying noisy band depriorization and tonal band priorization. | |
* Maxval-energy ratio gives us an idea of how noisy/tonal the band is. | |
* If maxval^2 ~ energy, then that band is mostly noise, and we can relax | |
* rate distortion requirements. | |
*/ | |
memcpy(euplims, uplims, sizeof(euplims)); | |
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { | |
/** psy already priorizes transients to some extent */ | |
float de_psy_factor = (sce->ics.num_windows > 1) ? 8.0f / sce->ics.group_len[w] : 1.0f; | |
start = w*128; | |
for (g = 0; g < sce->ics.num_swb; g++) { | |
if (nzs[g] > 0) { | |
float cleanup_factor = ff_sqrf(av_clipf(start / (cutoff * 0.75f), 1.0f, 2.0f)); | |
float energy2uplim = find_form_factor( | |
sce->ics.group_len[w], sce->ics.swb_sizes[g], | |
uplims[w*16+g] / (nzs[g] * sce->ics.swb_sizes[w]), | |
sce->coeffs + start, | |
nzslope * cleanup_factor); | |
energy2uplim *= de_psy_factor; | |
if (!(avctx->flags & AV_CODEC_FLAG_QSCALE)) { | |
/** In ABR, we need to priorize less and let rate control do its thing */ | |
energy2uplim = sqrtf(energy2uplim); | |
} | |
energy2uplim = FFMAX(0.015625f, FFMIN(1.0f, energy2uplim)); | |
uplims[w*16+g] *= av_clipf(rdlambda * energy2uplim, rdmin, rdmax) | |
* sce->ics.group_len[w]; | |
energy2uplim = find_form_factor( | |
sce->ics.group_len[w], sce->ics.swb_sizes[g], | |
uplims[w*16+g] / (nzs[g] * sce->ics.swb_sizes[w]), | |
sce->coeffs + start, | |
2.0f); | |
energy2uplim *= de_psy_factor; | |
if (!(avctx->flags & AV_CODEC_FLAG_QSCALE)) { | |
/** In ABR, we need to priorize less and let rate control do its thing */ | |
energy2uplim = sqrtf(energy2uplim); | |
} | |
energy2uplim = FFMAX(0.015625f, FFMIN(1.0f, energy2uplim)); | |
euplims[w*16+g] *= av_clipf(rdlambda * energy2uplim * sce->ics.group_len[w], | |
0.5f, 1.0f); | |
} | |
start += sce->ics.swb_sizes[g]; | |
} | |
} | |
for (i = 0; i < sizeof(maxsf) / sizeof(maxsf[0]); ++i) | |
maxsf[i] = SCALE_MAX_POS; | |
//perform two-loop search | |
//outer loop - improve quality | |
do { | |
//inner loop - quantize spectrum to fit into given number of bits | |
int overdist; | |
int qstep = its ? 1 : 32; | |
do { | |
int changed = 0; | |
prev = -1; | |
recomprd = 0; | |
tbits = 0; | |
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { | |
start = w*128; | |
for (g = 0; g < sce->ics.num_swb; g++) { | |
const float *coefs = &sce->coeffs[start]; | |
const float *scaled = &s->scoefs[start]; | |
int bits = 0; | |
int cb; | |
float dist = 0.0f; | |
float qenergy = 0.0f; | |
if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) { | |
start += sce->ics.swb_sizes[g]; | |
if (sce->can_pns[w*16+g]) { | |
/** PNS isn't free */ | |
tbits += ff_pns_bits(sce, w, g); | |
} | |
continue; | |
} | |
cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]); | |
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { | |
int b; | |
float sqenergy; | |
dist += quantize_band_cost_cached(s, w + w2, g, coefs + w2*128, | |
scaled + w2*128, | |
sce->ics.swb_sizes[g], | |
sce->sf_idx[w*16+g], | |
cb, | |
1.0f, | |
INFINITY, | |
&b, &sqenergy, | |
0); | |
bits += b; | |
qenergy += sqenergy; | |
} | |
dists[w*16+g] = dist - bits; | |
qenergies[w*16+g] = qenergy; | |
if (prev != -1) { | |
int sfdiff = av_clip(sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO, 0, 2*SCALE_MAX_DIFF); | |
bits += ff_aac_scalefactor_bits[sfdiff]; | |
} | |
tbits += bits; | |
start += sce->ics.swb_sizes[g]; | |
prev = sce->sf_idx[w*16+g]; | |
} | |
} | |
if (tbits > toomanybits) { | |
recomprd = 1; | |
for (i = 0; i < 128; i++) { | |
if (sce->sf_idx[i] < (SCALE_MAX_POS - SCALE_DIV_512)) { | |
int maxsf_i = (tbits > 5800) ? SCALE_MAX_POS : maxsf[i]; | |
int new_sf = FFMIN(maxsf_i, sce->sf_idx[i] + qstep); | |
if (new_sf != sce->sf_idx[i]) { | |
sce->sf_idx[i] = new_sf; | |
changed = 1; | |
} | |
} | |
} | |
} else if (tbits < toofewbits) { | |
recomprd = 1; | |
for (i = 0; i < 128; i++) { | |
if (sce->sf_idx[i] > SCALE_ONE_POS) { | |
int new_sf = FFMAX3(minsf[i], SCALE_ONE_POS, sce->sf_idx[i] - qstep); | |
if (new_sf != sce->sf_idx[i]) { | |
sce->sf_idx[i] = new_sf; | |
changed = 1; | |
} | |
} | |
} | |
} | |
qstep >>= 1; | |
if (!qstep && tbits > toomanybits && sce->sf_idx[0] < 217 && changed) | |
qstep = 1; | |
} while (qstep); | |
overdist = 1; | |
fflag = tbits < toofewbits; | |
for (i = 0; i < 2 && (overdist || recomprd); ++i) { | |
if (recomprd) { | |
/** Must recompute distortion */ | |
prev = -1; | |
tbits = 0; | |
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { | |
start = w*128; | |
for (g = 0; g < sce->ics.num_swb; g++) { | |
const float *coefs = sce->coeffs + start; | |
const float *scaled = s->scoefs + start; | |
int bits = 0; | |
int cb; | |
float dist = 0.0f; | |
float qenergy = 0.0f; | |
if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) { | |
start += sce->ics.swb_sizes[g]; | |
if (sce->can_pns[w*16+g]) { | |
/** PNS isn't free */ | |
tbits += ff_pns_bits(sce, w, g); | |
} | |
continue; | |
} | |
cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]); | |
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { | |
int b; | |
float sqenergy; | |
dist += quantize_band_cost_cached(s, w + w2, g, coefs + w2*128, | |
scaled + w2*128, | |
sce->ics.swb_sizes[g], | |
sce->sf_idx[w*16+g], | |
cb, | |
1.0f, | |
INFINITY, | |
&b, &sqenergy, | |
0); | |
bits += b; | |
qenergy += sqenergy; | |
} | |
dists[w*16+g] = dist - bits; | |
qenergies[w*16+g] = qenergy; | |
if (prev != -1) { | |
int sfdiff = av_clip(sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO, 0, 2*SCALE_MAX_DIFF); | |
bits += ff_aac_scalefactor_bits[sfdiff]; | |
} | |
tbits += bits; | |
start += sce->ics.swb_sizes[g]; | |
prev = sce->sf_idx[w*16+g]; | |
} | |
} | |
} | |
if (!i && s->options.pns && its > maxits/2 && tbits > toofewbits) { | |
float maxoverdist = 0.0f; | |
float ovrfactor = 1.f+(maxits-its)*16.f/maxits; | |
overdist = recomprd = 0; | |
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { | |
for (g = start = 0; g < sce->ics.num_swb; start += sce->ics.swb_sizes[g++]) { | |
if (!sce->zeroes[w*16+g] && sce->sf_idx[w*16+g] > SCALE_ONE_POS && dists[w*16+g] > uplims[w*16+g]*ovrfactor) { | |
float ovrdist = dists[w*16+g] / FFMAX(uplims[w*16+g],euplims[w*16+g]); | |
maxoverdist = FFMAX(maxoverdist, ovrdist); | |
overdist++; | |
} | |
} | |
} | |
if (overdist) { | |
/* We have overdistorted bands, trade for zeroes (that can be noise) | |
* Zero the bands in the lowest 1.25% spread-energy-threshold ranking | |
*/ | |
float minspread = max_spread_thr_r; | |
float maxspread = min_spread_thr_r; | |
float zspread; | |
int zeroable = 0; | |
int zeroed = 0; | |
int maxzeroed, zloop; | |
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { | |
for (g = start = 0; g < sce->ics.num_swb; start += sce->ics.swb_sizes[g++]) { | |
if (start >= pns_start_pos && !sce->zeroes[w*16+g] && sce->can_pns[w*16+g]) { | |
minspread = FFMIN(minspread, spread_thr_r[w*16+g]); | |
maxspread = FFMAX(maxspread, spread_thr_r[w*16+g]); | |
zeroable++; | |
} | |
} | |
} | |
zspread = (maxspread-minspread) * 0.0125f + minspread; | |
/* Don't PNS everything even if allowed. It suppresses bit starvation signals from RC, | |
* and forced the hand of the later search_for_pns step. | |
* Instead, PNS a fraction of the spread_thr_r range depending on how starved for bits we are, | |
* and leave further PNSing to search_for_pns if worthwhile. | |
*/ | |
zspread = FFMIN3(min_spread_thr_r * 8.f, zspread, | |
((toomanybits - tbits) * min_spread_thr_r + (tbits - toofewbits) * max_spread_thr_r) / (toomanybits - toofewbits + 1)); | |
maxzeroed = FFMIN(zeroable, FFMAX(1, (zeroable * its + maxits - 1) / (2 * maxits))); | |
for (zloop = 0; zloop < 2; zloop++) { | |
/* Two passes: first distorted stuff - two birds in one shot and all that, | |
* then anything viable. Viable means not zero, but either CB=zero-able | |
* (too high SF), not SF <= 1 (that means we'd be operating at very high | |
* quality, we don't want PNS when doing VHQ), PNS allowed, and within | |
* the lowest ranking percentile. | |
*/ | |
float loopovrfactor = (zloop) ? 1.0f : ovrfactor; | |
int loopminsf = (zloop) ? (SCALE_ONE_POS - SCALE_DIV_512) : SCALE_ONE_POS; | |
int mcb; | |
for (g = sce->ics.num_swb-1; g > 0 && zeroed < maxzeroed; g--) { | |
if (sce->ics.swb_offset[g] < pns_start_pos) | |
continue; | |
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { | |
if (!sce->zeroes[w*16+g] && sce->can_pns[w*16+g] && spread_thr_r[w*16+g] <= zspread | |
&& sce->sf_idx[w*16+g] > loopminsf | |
&& (dists[w*16+g] > loopovrfactor*uplims[w*16+g] || !(mcb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g])) | |
|| (mcb <= 1 && dists[w*16+g] > FFMIN(uplims[w*16+g], euplims[w*16+g]))) ) { | |
sce->zeroes[w*16+g] = 1; | |
sce->band_type[w*16+g] = 0; | |
zeroed++; | |
} | |
} | |
} | |
} | |
if (zeroed) | |
recomprd = fflag = 1; | |
} else { | |
overdist = 0; | |
} | |
} | |
} | |
minscaler = SCALE_MAX_POS; | |
maxscaler = 0; | |
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { | |
for (g = 0; g < sce->ics.num_swb; g++) { | |
if (!sce->zeroes[w*16+g]) { | |
minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]); | |
maxscaler = FFMAX(maxscaler, sce->sf_idx[w*16+g]); | |
} | |
} | |
} | |
minscaler = nminscaler = av_clip(minscaler, SCALE_ONE_POS - SCALE_DIV_512, SCALE_MAX_POS - SCALE_DIV_512); | |
prev = -1; | |
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { | |
/** Start with big steps, end up fine-tunning */ | |
int depth = (its > maxits/2) ? ((its > maxits*2/3) ? 1 : 3) : 10; | |
int edepth = depth+2; | |
float uplmax = its / (maxits*0.25f) + 1.0f; | |
uplmax *= (tbits > destbits) ? FFMIN(2.0f, tbits / (float)FFMAX(1,destbits)) : 1.0f; | |
start = w * 128; | |
for (g = 0; g < sce->ics.num_swb; g++) { | |
int prevsc = sce->sf_idx[w*16+g]; | |
if (prev < 0 && !sce->zeroes[w*16+g]) | |
prev = sce->sf_idx[0]; | |
if (!sce->zeroes[w*16+g]) { | |
const float *coefs = sce->coeffs + start; | |
const float *scaled = s->scoefs + start; | |
int cmb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]); | |
int mindeltasf = FFMAX(0, prev - SCALE_MAX_DIFF); | |
int maxdeltasf = FFMIN(SCALE_MAX_POS - SCALE_DIV_512, prev + SCALE_MAX_DIFF); | |
if ((!cmb || dists[w*16+g] > uplims[w*16+g]) && sce->sf_idx[w*16+g] > FFMAX(mindeltasf, minsf[w*16+g])) { | |
/* Try to make sure there is some energy in every nonzero band | |
* NOTE: This algorithm must be forcibly imbalanced, pushing harder | |
* on holes or more distorted bands at first, otherwise there's | |
* no net gain (since the next iteration will offset all bands | |
* on the opposite direction to compensate for extra bits) | |
*/ | |
for (i = 0; i < edepth && sce->sf_idx[w*16+g] > mindeltasf; ++i) { | |
int cb, bits; | |
float dist, qenergy; | |
int mb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]-1); | |
cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]); | |
dist = qenergy = 0.f; | |
bits = 0; | |
if (!cb) { | |
maxsf[w*16+g] = FFMIN(sce->sf_idx[w*16+g]-1, maxsf[w*16+g]); | |
} else if (i >= depth && dists[w*16+g] < euplims[w*16+g]) { | |
break; | |
} | |
/* !g is the DC band, it's important, since quantization error here | |
* applies to less than a cycle, it creates horrible intermodulation | |
* distortion if it doesn't stick to what psy requests | |
*/ | |
if (!g && sce->ics.num_windows > 1 && dists[w*16+g] >= euplims[w*16+g]) | |
maxsf[w*16+g] = FFMIN(sce->sf_idx[w*16+g], maxsf[w*16+g]); | |
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { | |
int b; | |
float sqenergy; | |
dist += quantize_band_cost_cached(s, w + w2, g, coefs + w2*128, | |
scaled + w2*128, | |
sce->ics.swb_sizes[g], | |
sce->sf_idx[w*16+g]-1, | |
cb, | |
1.0f, | |
INFINITY, | |
&b, &sqenergy, | |
0); | |
bits += b; | |
qenergy += sqenergy; | |
} | |
sce->sf_idx[w*16+g]--; | |
dists[w*16+g] = dist - bits; | |
qenergies[w*16+g] = qenergy; | |
if (mb && (sce->sf_idx[w*16+g] < mindeltasf || ( | |
(dists[w*16+g] < FFMIN(uplmax*uplims[w*16+g], euplims[w*16+g])) | |
&& (fabsf(qenergies[w*16+g]-energies[w*16+g]) < euplims[w*16+g]) | |
) )) { | |
break; | |
} | |
} | |
} else if (tbits > toofewbits && sce->sf_idx[w*16+g] < FFMIN(maxdeltasf, maxsf[w*16+g]) | |
&& (dists[w*16+g] < FFMIN(euplims[w*16+g], uplims[w*16+g])) | |
&& (fabsf(qenergies[w*16+g]-energies[w*16+g]) < euplims[w*16+g]) | |
) { | |
/** Um... over target. Save bits for more important stuff. */ | |
for (i = 0; i < depth && sce->sf_idx[w*16+g] < maxdeltasf; ++i) { | |
int cb, bits; | |
float dist, qenergy; | |
cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]+1); | |
if (cb > 0) { | |
dist = qenergy = 0.f; | |
bits = 0; | |
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { | |
int b; | |
float sqenergy; | |
dist += quantize_band_cost_cached(s, w + w2, g, coefs + w2*128, | |
scaled + w2*128, | |
sce->ics.swb_sizes[g], | |
sce->sf_idx[w*16+g]+1, | |
cb, | |
1.0f, | |
INFINITY, | |
&b, &sqenergy, | |
0); | |
bits += b; | |
qenergy += sqenergy; | |
} | |
dist -= bits; | |
if (dist < FFMIN(euplims[w*16+g], uplims[w*16+g])) { | |
sce->sf_idx[w*16+g]++; | |
dists[w*16+g] = dist; | |
qenergies[w*16+g] = qenergy; | |
} else { | |
break; | |
} | |
} else { | |
maxsf[w*16+g] = FFMIN(sce->sf_idx[w*16+g], maxsf[w*16+g]); | |
break; | |
} | |
} | |
} | |
prev = sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], mindeltasf, maxdeltasf); | |
if (sce->sf_idx[w*16+g] != prevsc) | |
fflag = 1; | |
nminscaler = FFMIN(nminscaler, sce->sf_idx[w*16+g]); | |
sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]); | |
} | |
start += sce->ics.swb_sizes[g]; | |
} | |
} | |
/** SF difference limit violation risk. Must re-clamp. */ | |
prev = -1; | |
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { | |
for (g = 0; g < sce->ics.num_swb; g++) { | |
if (!sce->zeroes[w*16+g]) { | |
int prevsf = sce->sf_idx[w*16+g]; | |
if (prev < 0) | |
prev = prevsf; | |
sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], prev - SCALE_MAX_DIFF, prev + SCALE_MAX_DIFF); | |
sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]); | |
prev = sce->sf_idx[w*16+g]; | |
if (!fflag && prevsf != sce->sf_idx[w*16+g]) | |
fflag = 1; | |
} | |
} | |
} | |
its++; | |
} while (fflag && its < maxits); | |
/** Scout out next nonzero bands */ | |
ff_init_nextband_map(sce, nextband); | |
prev = -1; | |
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { | |
/** Make sure proper codebooks are set */ | |
for (g = 0; g < sce->ics.num_swb; g++) { | |
if (!sce->zeroes[w*16+g]) { | |
sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]); | |
if (sce->band_type[w*16+g] <= 0) { | |
if (!ff_sfdelta_can_remove_band(sce, nextband, prev, w*16+g)) { | |
/** Cannot zero out, make sure it's not attempted */ | |
sce->band_type[w*16+g] = 1; | |
} else { | |
sce->zeroes[w*16+g] = 1; | |
sce->band_type[w*16+g] = 0; | |
} | |
} | |
} else { | |
sce->band_type[w*16+g] = 0; | |
} | |
/** Check that there's no SF delta range violations */ | |
if (!sce->zeroes[w*16+g]) { | |
if (prev != -1) { | |
av_unused int sfdiff = sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO; | |
av_assert1(sfdiff >= 0 && sfdiff <= 2*SCALE_MAX_DIFF); | |
} else if (sce->zeroes[0]) { | |
/** Set global gain to something useful */ | |
sce->sf_idx[0] = sce->sf_idx[w*16+g]; | |
} | |
prev = sce->sf_idx[w*16+g]; | |
} | |
} | |
} | |
} | |