Spaces:
Runtime error
Runtime error
#uvicorn app:app --host 0.0.0.0 --port 8000 --reload | |
# from fastapi import FastAPI | |
# from transformers import pipeline | |
# pipe = pipeline("automatic-speech-recognition", model="Pranjal12345/whisper-small-ne-pranjal") | |
# audio_path = "/home/pranjal/Downloads/chinese_audio.mp3" | |
# with open("/home/pranjal/Downloads/chinese_audio.mp3", "rb") as audio_file: | |
# audio_data = audio_file.read() | |
# app = FastAPI() | |
# @app.get("/") | |
# def hello(): | |
# output = pipe(input) | |
# return {"Output": output} | |
from fastapi import FastAPI | |
from transformers import WhisperProcessor, WhisperForConditionalGeneration | |
import librosa | |
app = FastAPI() | |
# Load model and processor | |
processor = WhisperProcessor.from_pretrained("openai/whisper-small") | |
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small") | |
model.config.forced_decoder_ids = None | |
# Path to your audio file | |
audio_file_path = "/home/pranjal/Downloads/output.mp3" | |
# Read the audio file | |
audio_data, _ = librosa.load(audio_file_path, sr=16000) | |
def transcribe_audio(): | |
# Process the audio data using the Whisper processor | |
input_features = processor(audio_data.tolist(), return_tensors="pt").input_features | |
# Generate transcription | |
predicted_ids = model.generate(input_features) | |
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) | |
return {"transcription": transcription[0]} | |