Spaces:
Runtime error
Runtime error
#uvicorn app:app --host 0.0.0.0 --port 8000 --reload | |
# from fastapi import FastAPI | |
# from transformers import WhisperProcessor, WhisperForConditionalGeneration | |
# import librosa | |
# import uvicorn | |
# app = FastAPI() | |
# processor = WhisperProcessor.from_pretrained("openai/whisper-small") | |
# model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small") | |
# model.config.forced_decoder_ids = None | |
# audio_file_path = "output.mp3" | |
# audio_data, _ = librosa.load(audio_file_path, sr=16000) | |
# @app.get("/") | |
# def transcribe_audio(): | |
# input_features = processor(audio_data.tolist(), return_tensors="pt").input_features | |
# predicted_ids = model.generate(input_features) | |
# transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) | |
# return {"transcription": transcription[0]} | |
# if __name__ == "__main__": | |
# import uvicorn | |
# uvicorn.run(app, host="0.0.0.0", port=8000) | |
# if __name__=='__main__': | |
# uvicorn.run('main:app', reload=True) | |
#uvicorn app:app --host 0.0.0.0 --port 8000 --reload | |
#curl -X GET "http://localhost:8000/?text=I%20like%20Apples" | |
#http://localhost:8000/?text=I%20like%20Apples | |
# from fastapi import FastAPI | |
# from transformers import WhisperProcessor, WhisperForConditionalGeneration | |
# import librosa | |
# import uvicorn | |
# app = FastAPI() | |
# # Load model and processor | |
# processor = WhisperProcessor.from_pretrained("openai/whisper-small") | |
# model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small") | |
# model.config.forced_decoder_ids = None | |
# # Path to your audio file | |
# audio_file_path = "/home/pranjal/Downloads/output.mp3" | |
# # Read the audio file | |
# audio_data, _ = librosa.load(audio_file_path, sr=16000) | |
# @app.get("/") | |
# def transcribe_audio(): | |
# # Process the audio data using the Whisper processor | |
# input_features = processor(audio_data.tolist(), return_tensors="pt").input_features | |
# # Generate transcription | |
# predicted_ids = model.generate(input_features) | |
# transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) | |
# return {"transcription": transcription[0]} | |
# if __name__ == "__main__": | |
# import uvicorn | |
# uvicorn.run(app, host="0.0.0.0", port=8000) | |
# if __name__=='__app__': | |
# uvicorn.run('main:app', reload=True) | |
from fastapi import FastAPI, UploadFile, File | |
from transformers import WhisperProcessor, WhisperForConditionalGeneration | |
import librosa | |
from fastapi.responses import HTMLResponse | |
import uvicorn | |
import io | |
app = FastAPI() | |
# Load model and processor | |
processor = WhisperProcessor.from_pretrained("openai/whisper-small") | |
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small") | |
model.config.forced_decoder_ids = None | |
def read_root(): | |
html_form = """ | |
<html> | |
<body> | |
<h2>ASR Transcription</h2> | |
<form action="/transcribe" method="post" enctype="multipart/form-data"> | |
<label for="audio_file">Upload an audio file (MP3 or WAV):</label> | |
<input type="file" id="audio_file" name="audio_file" accept=".mp3, .wav" required><br><br> | |
<input type="submit" value="Transcribe"> | |
</form> | |
</body> | |
</html> | |
""" | |
return HTMLResponse(content=html_form, status_code=200) | |
async def transcribe_audio(audio_file: UploadFile): | |
try: | |
# Read the uploaded audio file | |
audio_data = await audio_file.read() | |
# Process the audio data using the Whisper processor | |
audio_data, _ = librosa.load(io.BytesIO(audio_data), sr=16000) | |
input_features = processor(audio_data.tolist(), return_tensors="pt").input_features | |
# Generate transcription | |
predicted_ids = model.generate(input_features) | |
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) | |
return {"transcription": transcription[0]} | |
except Exception as e: | |
return {"error": str(e)} | |
# if __name__ == "__app__": | |
# uvicorn.run(app, host="0.0.0.0", port=8000, reload=True) | |