Spaces:
Running
Running
File size: 10,047 Bytes
8dcd1f3 3102bab 8dcd1f3 37f8d03 455e0c8 8dcd1f3 3102bab 8dcd1f3 37f8d03 3102bab 8dcd1f3 3102bab 37f8d03 8dcd1f3 37f8d03 3102bab 37f8d03 3102bab 37f8d03 3102bab 37f8d03 3102bab 37f8d03 8dcd1f3 3102bab 37f8d03 3102bab 37f8d03 b9e9312 37f8d03 455e0c8 37f8d03 3102bab b9e9312 37f8d03 3102bab 37f8d03 3102bab 37f8d03 455e0c8 37f8d03 3102bab 37f8d03 3102bab 37f8d03 3102bab 37f8d03 3102bab 455e0c8 9af961d 37f8d03 3102bab 455e0c8 37f8d03 9af961d 37f8d03 3102bab 8dcd1f3 37f8d03 3102bab 8dcd1f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import pandas as pd
import json
import numpy as np
import faiss
from sklearn.feature_extraction.text import TfidfVectorizer
from transformers import pipeline
# -------------------------------
# Load disease data and preprocess
# -------------------------------
def load_disease_data(csv_path):
df = pd.read_csv(csv_path)
df.columns = df.columns.str.strip().str.lower()
df = df.fillna("")
disease_symptoms = {}
disease_precautions = {}
for _, row in df.iterrows():
disease = row["disease"].strip()
symptoms = [s.strip().lower() for s in row["symptoms"].split(",") if s.strip()]
precautions = [p.strip() for p in row["precautions"].split(",") if p.strip()]
disease_symptoms[disease] = symptoms
disease_precautions[disease] = precautions
return disease_symptoms, disease_precautions
# Load CSV data (ensure this CSV file is in the repository root)
disease_symptoms, disease_precautions = load_disease_data("disease_sympts_prec_full.csv")
known_symptoms = set()
for syms in disease_symptoms.values():
known_symptoms.update(syms)
# -------------------------------
# Build symptom vectorizer and FAISS index
# -------------------------------
vectorizer = TfidfVectorizer()
symptom_texts = [" ".join(symptoms) for symptoms in disease_symptoms.values()]
tfidf_matrix = vectorizer.fit_transform(symptom_texts).toarray()
index = faiss.IndexFlatL2(tfidf_matrix.shape[1])
index.add(np.array(tfidf_matrix, dtype=np.float32))
disease_list = list(disease_symptoms.keys())
def find_closest_disease(user_symptoms):
max_matches = 0
best_disease = None
for disease, symptoms in disease_symptoms.items():
matches = len(set(user_symptoms) & set(symptoms))
if matches > max_matches:
max_matches = matches
best_disease = disease
# Require at least 2 symptoms matching to consider it valid
if max_matches >= 2:
return best_disease
else:
return None
# -------------------------------
# Load Medical NER model for symptom extraction
# -------------------------------
medical_ner = pipeline(
"ner",
model="blaze999/Medical-NER",
tokenizer="blaze999/Medical-NER",
aggregation_strategy="simple"
)
def extract_symptoms_ner(text):
results = medical_ner(text)
extracted = []
for r in results:
if "SIGN_SYMPTOM" in r["entity_group"]:
extracted.append(r["word"].lower())
return list(set(extracted))
def is_affirmative(answer):
answer_lower = answer.lower()
return any(word in answer_lower for word in ["yes", "yeah", "yep", "certainly", "sometimes", "a little"])
import random
# Map symptoms to associated body parts
SYMPTOM_BODY_PARTS = {
"headache": "head",
"fever": None,
"cold": None,
"cough": "throat",
"chest pain": "chest",
"stomach ache": "abdomen",
"sore throat": "throat",
"back pain": "back",
"ear pain": "ear",
"toothache": "mouth",
"nausea": "stomach",
"vomiting": "stomach",
"diarrhea": "abdomen",
"shortness of breath": "chest",
"dizziness": "head",
"rash": "skin",
"eye pain": "eye",
"abdominal pain": "abdomen",
"joint pain": "joint",
"muscle pain": "muscle",
"neck pain": "neck"
}
# -------------------------------
# Chatbot session class
# -------------------------------
class ChatbotSession:
def __init__(self):
self.conversation_history = []
self.reported_symptoms = set()
self.symptom_details = {}
self.asked_missing = set()
self.awaiting_followup = None
self.current_detail_symptom = None
self.state = "intake"
self.finished = False
self.predicted_diseases = []
greeting = "Doctor: Hello! I'm here to assist you. Could you please describe how you're feeling today?"
self.conversation_history.append(greeting)
def process_message(self, message: str) -> str:
if self.finished:
return "Doctor: Thank you. Our session has ended. Wishing you good health!"
if self.state == "intake":
return self._handle_intake(message)
if self.state == "symptom_detail":
return self._handle_symptom_detail(message)
if self.state == "pain_check":
return self._handle_pain_check(message)
if self.state == "medications":
return self._handle_medications(message)
return "Doctor: Could you please clarify that?"
def _handle_intake(self, message):
if message.lower() in ["exit", "quit", "no"]:
if not self.reported_symptoms:
goodbye = "Doctor: It seems no symptoms were reported. Ending the session."
self.finished = True
return goodbye
else:
self._predict_diseases()
self.state = "pain_check"
return "Doctor: Before proceeding, are you experiencing any pain? If yes, please rate it 1-10 or type 'no'."
ner_results = extract_symptoms_ner(message)
if ner_results:
for sym in ner_results:
if sym not in self.reported_symptoms:
self.reported_symptoms.add(sym)
unexplored_symptoms = list(self.reported_symptoms - set(self.symptom_details.keys()))
if unexplored_symptoms:
symptom = random.choice(unexplored_symptoms)
self.current_detail_symptom = symptom
self.symptom_details[symptom] = {}
self.state = "symptom_detail"
return f"Doctor: About your '{symptom}', when did it start? (e.g., 2 days ago)"
else:
self._predict_diseases()
self.state = "pain_check"
return "Doctor: Before proceeding, are you experiencing any pain? If yes, please rate it 1-10 or type 'no'."
else:
return "Doctor: I couldn't clearly detect any medical symptoms. Could you please describe your condition differently?"
def _handle_symptom_detail(self, message):
if self.current_detail_symptom and 'duration' not in self.symptom_details[self.current_detail_symptom]:
self.symptom_details[self.current_detail_symptom]['duration'] = message
return f"Doctor: How severe is the '{self.current_detail_symptom}'? (mild, moderate, severe)"
if self.current_detail_symptom and 'severity' not in self.symptom_details[self.current_detail_symptom]:
self.symptom_details[self.current_detail_symptom]['severity'] = message
body_part = SYMPTOM_BODY_PARTS.get(self.current_detail_symptom)
if body_part:
self.symptom_details[self.current_detail_symptom]['location'] = body_part
self.state = "intake"
return "Doctor: Thank you. Are there any more symptoms you'd like to mention?"
else:
return f"Doctor: Where exactly do you feel the '{self.current_detail_symptom}'? (e.g., forehead, chest, abdomen)"
if self.current_detail_symptom and 'location' not in self.symptom_details[self.current_detail_symptom]:
self.symptom_details[self.current_detail_symptom]['location'] = message
self.state = "intake"
return "Doctor: Thank you. Are there any more symptoms you'd like to mention?"
return "Doctor: Please clarify that."
def _handle_pain_check(self, message):
try:
pain_level = int(message)
self.symptom_details['pain'] = {'severity': pain_level}
except ValueError:
if is_affirmative(message):
self.symptom_details['pain'] = {'severity': 'mild'}
else:
self.symptom_details['pain'] = {'severity': 'none'}
self.state = "medications"
return "Doctor: Have you taken any medications recently? Please mention them or type 'no'."
def _handle_medications(self, message):
self.symptom_details['medications'] = message if message.lower() not in ["no", "none"] else "None"
self.finished = True
return self._generate_summary()
def _predict_diseases(self):
match_scores = []
for disease, symptoms in disease_symptoms.items():
matches = len(set(self.reported_symptoms) & set(symptoms))
if matches > 0:
score = matches / len(symptoms)
if matches >= 2:
match_scores.append((disease, score))
match_scores.sort(key=lambda x: x[1], reverse=True)
self.predicted_diseases = match_scores[:2]
def _generate_summary(self):
report_lines = []
for sym, details in self.symptom_details.items():
if isinstance(details, dict) and details:
formatted_details = ", ".join(f"{k}: {v}" for k, v in details.items())
report_lines.append(f"- {sym.title()}: {formatted_details}")
else:
report_lines.append(f"- {sym.title()}: {details}")
report = "\n".join(report_lines)
disease_part = ""
if self.predicted_diseases:
disease_part = "\n\nPossible Conditions:" + "\n".join([
f"- {disease} ({int(score * 100)}%)" for disease, score in self.predicted_diseases
])
else:
disease_part = "\n\nDoctor: No strong condition match was found based on reported symptoms."
advice = "\n\nDoctor: Please note this is a preliminary virtual consultation. You should consult a physician if symptoms persist, worsen, or if you feel uncomfortable."
return f"Doctor: Thank you for the detailed information!\n\n=== Medical Report ===\n{report}{disease_part}{advice}"
def get_data(self):
return {
"conversation": self.conversation_history,
"symptoms": list(self.reported_symptoms),
"symptom_details": self.symptom_details,
"predicted_diseases": self.predicted_diseases
}
|