import os import gradio as gr from langchain.document_loaders import PyPDFLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import FAISS from langchain.chains import RetrievalQA from langchain_community.llms import HuggingFaceEndpoint # Load Hugging Face API token hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN") # Load LLM with token llm = HuggingFaceEndpoint( repo_id="google/flan-t5-base", huggingfacehub_api_token=hf_token, model_kwargs={"temperature": 0.7, "max_length": 512} ) summary_cache = "" glossary_cache = "" retriever_chain = None def extract_text_and_summary(file): global retriever_chain, summary_cache, glossary_cache loader = PyPDFLoader(file.name) docs = loader.load() splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50) splits = splitter.split_documents(docs) full_text = "\n".join([doc.page_content for doc in splits]) embeddings = HuggingFaceEmbeddings() db = FAISS.from_documents(splits, embeddings) retriever = db.as_retriever() retriever_chain = RetrievalQA.from_chain_type(llm=llm, retriever=retriever) summary_prompt = f"Summarize this legal document:\n{full_text[:1500]}" glossary_prompt = f"Extract and define legal terms from the document:\n{full_text[:1500]}" summary_cache = llm(summary_prompt) glossary_cache = llm(glossary_prompt) filename = "summary_output.txt" with open(filename, "w", encoding="utf-8") as f: f.write("=== Summary ===\n") f.write(summary_cache + "\n\n") f.write("=== Glossary ===\n") f.write(glossary_cache + "\n") return full_text, summary_cache, glossary_cache, filename def answer_custom_question(question): if retriever_chain: return retriever_chain.run(question) return "Please upload and process a document first." with gr.Blocks() as demo: gr.Markdown("## ๐Ÿงพ Legal Document Summarizer Using LangChain") with gr.Row(): file = gr.File(label="๐Ÿ“ Upload Legal PDF", file_types=[".pdf"]) process_btn = gr.Button("๐Ÿ” Extract & Summarize") extracted_text = gr.Textbox(label="๐Ÿ“„ Extracted Text", lines=10) summary_output = gr.Textbox(label="๐Ÿ“ Summary", lines=5) glossary_output = gr.Textbox(label="๐Ÿ“˜ Glossary", lines=5) download_link = gr.File(label="โฌ‡๏ธ Download Summary") with gr.Row(): user_question = gr.Textbox(label="โ“ Ask a Custom Question") custom_answer = gr.Textbox(label="๐Ÿค– AI Answer") ask_btn = gr.Button("๐Ÿง  Get Answer") process_btn.click(fn=extract_text_and_summary, inputs=file, outputs=[ extracted_text, summary_output, glossary_output, download_link ]) ask_btn.click(fn=answer_custom_question, inputs=user_question, outputs=custom_answer) demo.launch()