Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files- app.py +81 -0
- requirements.txt +10 -0
app.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
from langchain.document_loaders import PyPDFLoader
|
4 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
6 |
+
from langchain.vectorstores import FAISS
|
7 |
+
from langchain.chains import RetrievalQA
|
8 |
+
from langchain_community.llms import HuggingFaceEndpoint
|
9 |
+
|
10 |
+
# Load Hugging Face API token
|
11 |
+
hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
12 |
+
|
13 |
+
# Load LLM with token
|
14 |
+
llm = HuggingFaceEndpoint(
|
15 |
+
repo_id="google/flan-t5-base",
|
16 |
+
huggingfacehub_api_token=hf_token,
|
17 |
+
model_kwargs={"temperature": 0.7, "max_length": 512}
|
18 |
+
)
|
19 |
+
|
20 |
+
summary_cache = ""
|
21 |
+
glossary_cache = ""
|
22 |
+
retriever_chain = None
|
23 |
+
|
24 |
+
def extract_text_and_summary(file):
|
25 |
+
global retriever_chain, summary_cache, glossary_cache
|
26 |
+
|
27 |
+
loader = PyPDFLoader(file.name)
|
28 |
+
docs = loader.load()
|
29 |
+
|
30 |
+
splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
31 |
+
splits = splitter.split_documents(docs)
|
32 |
+
full_text = "\n".join([doc.page_content for doc in splits])
|
33 |
+
|
34 |
+
embeddings = HuggingFaceEmbeddings()
|
35 |
+
db = FAISS.from_documents(splits, embeddings)
|
36 |
+
retriever = db.as_retriever()
|
37 |
+
retriever_chain = RetrievalQA.from_chain_type(llm=llm, retriever=retriever)
|
38 |
+
|
39 |
+
summary_prompt = f"Summarize this legal document:\n{full_text[:1500]}"
|
40 |
+
glossary_prompt = f"Extract and define legal terms from the document:\n{full_text[:1500]}"
|
41 |
+
|
42 |
+
summary_cache = llm(summary_prompt)
|
43 |
+
glossary_cache = llm(glossary_prompt)
|
44 |
+
|
45 |
+
filename = "summary_output.txt"
|
46 |
+
with open(filename, "w", encoding="utf-8") as f:
|
47 |
+
f.write("=== Summary ===\n")
|
48 |
+
f.write(summary_cache + "\n\n")
|
49 |
+
f.write("=== Glossary ===\n")
|
50 |
+
f.write(glossary_cache + "\n")
|
51 |
+
|
52 |
+
return full_text, summary_cache, glossary_cache, filename
|
53 |
+
|
54 |
+
def answer_custom_question(question):
|
55 |
+
if retriever_chain:
|
56 |
+
return retriever_chain.run(question)
|
57 |
+
return "Please upload and process a document first."
|
58 |
+
|
59 |
+
with gr.Blocks() as demo:
|
60 |
+
gr.Markdown("## π§Ύ Legal Document Summarizer Using LangChain")
|
61 |
+
|
62 |
+
with gr.Row():
|
63 |
+
file = gr.File(label="π Upload Legal PDF", file_types=[".pdf"])
|
64 |
+
process_btn = gr.Button("π Extract & Summarize")
|
65 |
+
|
66 |
+
extracted_text = gr.Textbox(label="π Extracted Text", lines=10)
|
67 |
+
summary_output = gr.Textbox(label="π Summary", lines=5)
|
68 |
+
glossary_output = gr.Textbox(label="π Glossary", lines=5)
|
69 |
+
download_link = gr.File(label="β¬οΈ Download Summary")
|
70 |
+
|
71 |
+
with gr.Row():
|
72 |
+
user_question = gr.Textbox(label="β Ask a Custom Question")
|
73 |
+
custom_answer = gr.Textbox(label="π€ AI Answer")
|
74 |
+
ask_btn = gr.Button("π§ Get Answer")
|
75 |
+
|
76 |
+
process_btn.click(fn=extract_text_and_summary, inputs=file, outputs=[
|
77 |
+
extracted_text, summary_output, glossary_output, download_link
|
78 |
+
])
|
79 |
+
ask_btn.click(fn=answer_custom_question, inputs=user_question, outputs=custom_answer)
|
80 |
+
|
81 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==4.14.0
|
2 |
+
langchain==0.1.14
|
3 |
+
langchain-community
|
4 |
+
huggingface_hub
|
5 |
+
pdfplumber
|
6 |
+
python-docx
|
7 |
+
tiktoken
|
8 |
+
faiss-cpu
|
9 |
+
transformers==4.40.1
|
10 |
+
torch
|