|
import torch
|
|
from torch import Tensor
|
|
import comfy.utils
|
|
import comfy.model_patcher
|
|
import comfy.model_management
|
|
from nodes import ImageScale
|
|
from comfy.model_base import BaseModel
|
|
from comfy.model_patcher import ModelPatcher
|
|
from comfy.controlnet import ControlNet, T2IAdapter
|
|
from typing import List, Union, Tuple, Dict
|
|
from weakref import WeakSet
|
|
|
|
opt_C = 4
|
|
opt_f = 8
|
|
|
|
def ceildiv(big, small):
|
|
|
|
return -(big // -small)
|
|
|
|
from enum import Enum
|
|
class BlendMode(Enum):
|
|
FOREGROUND = 'Foreground'
|
|
BACKGROUND = 'Background'
|
|
|
|
class Processing: ...
|
|
class Device: ...
|
|
devices = Device()
|
|
devices.device = comfy.model_management.get_torch_device()
|
|
|
|
def null_decorator(fn):
|
|
def wrapper(*args, **kwargs):
|
|
return fn(*args, **kwargs)
|
|
return wrapper
|
|
|
|
keep_signature = null_decorator
|
|
controlnet = null_decorator
|
|
stablesr = null_decorator
|
|
grid_bbox = null_decorator
|
|
custom_bbox = null_decorator
|
|
noise_inverse = null_decorator
|
|
|
|
class BBox:
|
|
''' grid bbox '''
|
|
|
|
def __init__(self, x:int, y:int, w:int, h:int):
|
|
self.x = x
|
|
self.y = y
|
|
self.w = w
|
|
self.h = h
|
|
self.box = [x, y, x+w, y+h]
|
|
self.slicer = slice(None), slice(None), slice(y, y+h), slice(x, x+w)
|
|
|
|
def __getitem__(self, idx:int) -> int:
|
|
return self.box[idx]
|
|
|
|
def split_bboxes(w:int, h:int, tile_w:int, tile_h:int, overlap:int=16, init_weight:Union[Tensor, float]=1.0) -> Tuple[List[BBox], Tensor]:
|
|
cols = ceildiv((w - overlap) , (tile_w - overlap))
|
|
rows = ceildiv((h - overlap) , (tile_h - overlap))
|
|
dx = (w - tile_w) / (cols - 1) if cols > 1 else 0
|
|
dy = (h - tile_h) / (rows - 1) if rows > 1 else 0
|
|
|
|
bbox_list: List[BBox] = []
|
|
weight = torch.zeros((1, 1, h, w), device=devices.device, dtype=torch.float32)
|
|
for row in range(rows):
|
|
y = min(int(row * dy), h - tile_h)
|
|
for col in range(cols):
|
|
x = min(int(col * dx), w - tile_w)
|
|
|
|
bbox = BBox(x, y, tile_w, tile_h)
|
|
bbox_list.append(bbox)
|
|
weight[bbox.slicer] += init_weight
|
|
|
|
return bbox_list, weight
|
|
|
|
class CustomBBox(BBox):
|
|
''' region control bbox '''
|
|
pass
|
|
|
|
class AbstractDiffusion:
|
|
def __init__(self):
|
|
self.method = self.__class__.__name__
|
|
self.pbar = None
|
|
|
|
|
|
self.w: int = 0
|
|
self.h: int = 0
|
|
self.tile_width: int = None
|
|
self.tile_height: int = None
|
|
self.tile_overlap: int = None
|
|
self.tile_batch_size: int = None
|
|
|
|
|
|
|
|
self.x_buffer: Tensor = None
|
|
|
|
|
|
|
|
self._weights: Tensor = None
|
|
|
|
self._init_grid_bbox = None
|
|
self._init_done = None
|
|
|
|
|
|
self.step_count = 0
|
|
self.inner_loop_count = 0
|
|
self.kdiff_step = -1
|
|
|
|
|
|
self.enable_grid_bbox: bool = False
|
|
self.tile_w: int = None
|
|
self.tile_h: int = None
|
|
self.tile_bs: int = None
|
|
self.num_tiles: int = None
|
|
self.num_batches: int = None
|
|
self.batched_bboxes: List[List[BBox]] = []
|
|
|
|
|
|
self.enable_custom_bbox: bool = False
|
|
self.custom_bboxes: List[CustomBBox] = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.enable_controlnet: bool = False
|
|
|
|
self.control_tensor_batch_dict = {}
|
|
self.control_tensor_batch: List[List[Tensor]] = [[]]
|
|
|
|
self.control_params: Dict[Tuple, List[List[Tensor]]] = {}
|
|
self.control_tensor_cpu: bool = None
|
|
self.control_tensor_custom: List[List[Tensor]] = []
|
|
|
|
self.draw_background: bool = True
|
|
self.control_tensor_cpu = False
|
|
self.weights = None
|
|
self.imagescale = ImageScale()
|
|
|
|
def reset(self):
|
|
tile_width = self.tile_width
|
|
tile_height = self.tile_height
|
|
tile_overlap = self.tile_overlap
|
|
tile_batch_size = self.tile_batch_size
|
|
self.__init__()
|
|
self.tile_width = tile_width
|
|
self.tile_height = tile_height
|
|
self.tile_overlap = tile_overlap
|
|
self.tile_batch_size = tile_batch_size
|
|
|
|
def repeat_tensor(self, x:Tensor, n:int, concat=False, concat_to=0) -> Tensor:
|
|
''' repeat the tensor on it's first dim '''
|
|
if n == 1: return x
|
|
B = x.shape[0]
|
|
r_dims = len(x.shape) - 1
|
|
if B == 1:
|
|
shape = [n] + [-1] * r_dims
|
|
return x.expand(shape)
|
|
else:
|
|
if concat:
|
|
return torch.cat([x for _ in range(n)], dim=0)[:concat_to]
|
|
shape = [n] + [1] * r_dims
|
|
return x.repeat(shape)
|
|
def update_pbar(self):
|
|
if self.pbar.n >= self.pbar.total:
|
|
self.pbar.close()
|
|
else:
|
|
|
|
sampling_step = 20
|
|
if self.step_count == sampling_step:
|
|
self.inner_loop_count += 1
|
|
if self.inner_loop_count < self.total_bboxes:
|
|
self.pbar.update()
|
|
else:
|
|
self.step_count = sampling_step
|
|
self.inner_loop_count = 0
|
|
def reset_buffer(self, x_in:Tensor):
|
|
|
|
if self.x_buffer is None or self.x_buffer.shape != x_in.shape:
|
|
self.x_buffer = torch.zeros_like(x_in, device=x_in.device, dtype=x_in.dtype)
|
|
else:
|
|
self.x_buffer.zero_()
|
|
|
|
@grid_bbox
|
|
def init_grid_bbox(self, tile_w:int, tile_h:int, overlap:int, tile_bs:int):
|
|
|
|
|
|
self.weights = torch.zeros((1, 1, self.h, self.w), device=devices.device, dtype=torch.float32)
|
|
self.enable_grid_bbox = True
|
|
|
|
self.tile_w = min(tile_w, self.w)
|
|
self.tile_h = min(tile_h, self.h)
|
|
overlap = max(0, min(overlap, min(tile_w, tile_h) - 4))
|
|
|
|
|
|
bboxes, weights = split_bboxes(self.w, self.h, self.tile_w, self.tile_h, overlap, self.get_tile_weights())
|
|
self.weights += weights
|
|
self.num_tiles = len(bboxes)
|
|
self.num_batches = ceildiv(self.num_tiles , tile_bs)
|
|
self.tile_bs = ceildiv(len(bboxes) , self.num_batches)
|
|
self.batched_bboxes = [bboxes[i*self.tile_bs:(i+1)*self.tile_bs] for i in range(self.num_batches)]
|
|
|
|
@grid_bbox
|
|
def get_tile_weights(self) -> Union[Tensor, float]:
|
|
return 1.0
|
|
|
|
@noise_inverse
|
|
def init_noise_inverse(self, steps:int, retouch:float, get_cache_callback, set_cache_callback, renoise_strength:float, renoise_kernel:int):
|
|
self.noise_inverse_enabled = True
|
|
self.noise_inverse_steps = steps
|
|
self.noise_inverse_retouch = float(retouch)
|
|
self.noise_inverse_renoise_strength = float(renoise_strength)
|
|
self.noise_inverse_renoise_kernel = int(renoise_kernel)
|
|
self.noise_inverse_set_cache = set_cache_callback
|
|
self.noise_inverse_get_cache = get_cache_callback
|
|
|
|
def init_done(self):
|
|
'''
|
|
Call this after all `init_*`, settings are done, now perform:
|
|
- settings sanity check
|
|
- pre-computations, cache init
|
|
- anything thing needed before denoising starts
|
|
'''
|
|
|
|
|
|
|
|
self.total_bboxes = 0
|
|
if self.enable_grid_bbox: self.total_bboxes += self.num_batches
|
|
if self.enable_custom_bbox: self.total_bboxes += len(self.custom_bboxes)
|
|
assert self.total_bboxes > 0, "Nothing to paint! No background to draw and no custom bboxes were provided."
|
|
|
|
|
|
|
|
|
|
@controlnet
|
|
def prepare_controlnet_tensors(self, refresh:bool=False, tensor=None):
|
|
''' Crop the control tensor into tiles and cache them '''
|
|
if not refresh:
|
|
if self.control_tensor_batch is not None or self.control_params is not None: return
|
|
tensors = [tensor]
|
|
self.org_control_tensor_batch = tensors
|
|
self.control_tensor_batch = []
|
|
for i in range(len(tensors)):
|
|
control_tile_list = []
|
|
control_tensor = tensors[i]
|
|
for bboxes in self.batched_bboxes:
|
|
single_batch_tensors = []
|
|
for bbox in bboxes:
|
|
if len(control_tensor.shape) == 3:
|
|
control_tensor.unsqueeze_(0)
|
|
control_tile = control_tensor[:, :, bbox[1]*opt_f:bbox[3]*opt_f, bbox[0]*opt_f:bbox[2]*opt_f]
|
|
single_batch_tensors.append(control_tile)
|
|
control_tile = torch.cat(single_batch_tensors, dim=0)
|
|
if self.control_tensor_cpu:
|
|
control_tile = control_tile.cpu()
|
|
control_tile_list.append(control_tile)
|
|
self.control_tensor_batch.append(control_tile_list)
|
|
|
|
if len(self.custom_bboxes) > 0:
|
|
custom_control_tile_list = []
|
|
for bbox in self.custom_bboxes:
|
|
if len(control_tensor.shape) == 3:
|
|
control_tensor.unsqueeze_(0)
|
|
control_tile = control_tensor[:, :, bbox[1]*opt_f:bbox[3]*opt_f, bbox[0]*opt_f:bbox[2]*opt_f]
|
|
if self.control_tensor_cpu:
|
|
control_tile = control_tile.cpu()
|
|
custom_control_tile_list.append(control_tile)
|
|
self.control_tensor_custom.append(custom_control_tile_list)
|
|
|
|
@controlnet
|
|
def switch_controlnet_tensors(self, batch_id:int, x_batch_size:int, tile_batch_size:int, is_denoise=False):
|
|
|
|
if self.control_tensor_batch is None: return
|
|
|
|
|
|
|
|
for param_id in range(len(self.control_tensor_batch)):
|
|
|
|
control_tile = self.control_tensor_batch[param_id][batch_id]
|
|
|
|
if x_batch_size > 1:
|
|
all_control_tile = []
|
|
for i in range(tile_batch_size):
|
|
this_control_tile = [control_tile[i].unsqueeze(0)] * x_batch_size
|
|
all_control_tile.append(torch.cat(this_control_tile, dim=0))
|
|
control_tile = torch.cat(all_control_tile, dim=0)
|
|
self.control_tensor_batch[param_id][batch_id] = control_tile
|
|
|
|
|
|
|
|
|
|
def process_controlnet(self, x_shape, x_dtype, c_in: dict, cond_or_uncond: List, bboxes, batch_size: int, batch_id: int):
|
|
control: ControlNet = c_in['control']
|
|
param_id = -1
|
|
tuple_key = tuple(cond_or_uncond) + tuple(x_shape)
|
|
while control is not None:
|
|
param_id += 1
|
|
PH, PW = self.h*8, self.w*8
|
|
|
|
if tuple_key not in self.control_params:
|
|
self.control_params[tuple_key] = [[None]]
|
|
|
|
while len(self.control_params[tuple_key]) <= param_id:
|
|
self.control_params[tuple_key].append([None])
|
|
|
|
while len(self.control_params[tuple_key][param_id]) <= batch_id:
|
|
self.control_params[tuple_key][param_id].append(None)
|
|
|
|
|
|
|
|
if self.refresh or control.cond_hint is None or not isinstance(self.control_params[tuple_key][param_id][batch_id], Tensor):
|
|
dtype = getattr(control, 'manual_cast_dtype', None)
|
|
if dtype is None: dtype = getattr(getattr(control, 'control_model', None), 'dtype', None)
|
|
if dtype is None: dtype = x_dtype
|
|
if isinstance(control, T2IAdapter):
|
|
width, height = control.scale_image_to(PW, PH)
|
|
control.cond_hint = comfy.utils.common_upscale(control.cond_hint_original, width, height, 'nearest-exact', "center").float().to(control.device)
|
|
if control.channels_in == 1 and control.cond_hint.shape[1] > 1:
|
|
control.cond_hint = torch.mean(control.cond_hint, 1, keepdim=True)
|
|
elif control.__class__.__name__ == 'ControlLLLiteAdvanced':
|
|
if control.sub_idxs is not None and control.cond_hint_original.shape[0] >= control.full_latent_length:
|
|
control.cond_hint = comfy.utils.common_upscale(control.cond_hint_original[control.sub_idxs], PW, PH, 'nearest-exact', "center").to(dtype=dtype, device=control.device)
|
|
else:
|
|
if (PH, PW) == (control.cond_hint_original.shape[-2], control.cond_hint_original.shape[-1]):
|
|
control.cond_hint = control.cond_hint_original.clone().to(dtype=dtype, device=control.device)
|
|
else:
|
|
control.cond_hint = comfy.utils.common_upscale(control.cond_hint_original, PW, PH, 'nearest-exact', "center").to(dtype=dtype, device=control.device)
|
|
else:
|
|
if (PH, PW) == (control.cond_hint_original.shape[-2], control.cond_hint_original.shape[-1]):
|
|
control.cond_hint = control.cond_hint_original.clone().to(dtype=dtype, device=control.device)
|
|
else:
|
|
control.cond_hint = comfy.utils.common_upscale(control.cond_hint_original, PW, PH, 'nearest-exact', 'center').to(dtype=dtype, device=control.device)
|
|
|
|
|
|
|
|
|
|
|
|
cond_hint_pre_tile = control.cond_hint
|
|
if control.cond_hint.shape[0] < batch_size :
|
|
cond_hint_pre_tile = self.repeat_tensor(control.cond_hint, ceildiv(batch_size, control.cond_hint.shape[0]))[:batch_size]
|
|
cns = [cond_hint_pre_tile[:, :, bbox[1]*opt_f:bbox[3]*opt_f, bbox[0]*opt_f:bbox[2]*opt_f] for bbox in bboxes]
|
|
control.cond_hint = torch.cat(cns, dim=0)
|
|
self.control_params[tuple_key][param_id][batch_id]=control.cond_hint
|
|
else:
|
|
control.cond_hint = self.control_params[tuple_key][param_id][batch_id]
|
|
control = control.previous_controlnet
|
|
|
|
import numpy as np
|
|
from numpy import pi, exp, sqrt
|
|
def gaussian_weights(tile_w:int, tile_h:int) -> Tensor:
|
|
'''
|
|
Copy from the original implementation of Mixture of Diffusers
|
|
https://github.com/albarji/mixture-of-diffusers/blob/master/mixdiff/tiling.py
|
|
This generates gaussian weights to smooth the noise of each tile.
|
|
This is critical for this method to work.
|
|
'''
|
|
f = lambda x, midpoint, var=0.01: exp(-(x-midpoint)*(x-midpoint) / (tile_w*tile_w) / (2*var)) / sqrt(2*pi*var)
|
|
x_probs = [f(x, (tile_w - 1) / 2) for x in range(tile_w)]
|
|
y_probs = [f(y, tile_h / 2) for y in range(tile_h)]
|
|
|
|
w = np.outer(y_probs, x_probs)
|
|
return torch.from_numpy(w).to(devices.device, dtype=torch.float32)
|
|
|
|
class CondDict: ...
|
|
|
|
class MultiDiffusion(AbstractDiffusion):
|
|
|
|
@torch.inference_mode()
|
|
def __call__(self, model_function: BaseModel.apply_model, args: dict):
|
|
x_in: Tensor = args["input"]
|
|
t_in: Tensor = args["timestep"]
|
|
c_in: dict = args["c"]
|
|
cond_or_uncond: List = args["cond_or_uncond"]
|
|
c_crossattn: Tensor = c_in['c_crossattn']
|
|
|
|
N, C, H, W = x_in.shape
|
|
|
|
|
|
self.refresh = False
|
|
if self.weights is None or self.h != H or self.w != W:
|
|
self.h, self.w = H, W
|
|
self.refresh = True
|
|
self.init_grid_bbox(self.tile_width, self.tile_height, self.tile_overlap, self.tile_batch_size)
|
|
|
|
self.init_done()
|
|
self.h, self.w = H, W
|
|
|
|
self.reset_buffer(x_in)
|
|
|
|
|
|
if self.draw_background:
|
|
for batch_id, bboxes in enumerate(self.batched_bboxes):
|
|
if comfy.model_management.processing_interrupted():
|
|
|
|
return x_in
|
|
|
|
|
|
x_tile = torch.cat([x_in[bbox.slicer] for bbox in bboxes], dim=0)
|
|
n_rep = len(bboxes)
|
|
ts_tile = self.repeat_tensor(t_in, n_rep)
|
|
cond_tile = self.repeat_tensor(c_crossattn, n_rep)
|
|
c_tile = c_in.copy()
|
|
c_tile['c_crossattn'] = cond_tile
|
|
if 'time_context' in c_in:
|
|
c_tile['time_context'] = self.repeat_tensor(c_in['time_context'], n_rep)
|
|
for key in c_tile:
|
|
if key in ['y', 'c_concat']:
|
|
icond = c_tile[key]
|
|
if icond.shape[2:] == (self.h, self.w):
|
|
c_tile[key] = torch.cat([icond[bbox.slicer] for bbox in bboxes])
|
|
else:
|
|
c_tile[key] = self.repeat_tensor(icond, n_rep)
|
|
|
|
|
|
|
|
if 'control' in c_in:
|
|
control=c_in['control']
|
|
self.process_controlnet(x_tile.shape, x_tile.dtype, c_in, cond_or_uncond, bboxes, N, batch_id)
|
|
c_tile['control'] = control.get_control_orig(x_tile, ts_tile, c_tile, len(cond_or_uncond))
|
|
|
|
|
|
|
|
|
|
x_tile_out = model_function(x_tile, ts_tile, **c_tile)
|
|
|
|
for i, bbox in enumerate(bboxes):
|
|
self.x_buffer[bbox.slicer] += x_tile_out[i*N:(i+1)*N, :, :, :]
|
|
del x_tile_out, x_tile, ts_tile, c_tile
|
|
|
|
|
|
|
|
|
|
|
|
x_out = torch.where(self.weights > 1, self.x_buffer / self.weights, self.x_buffer)
|
|
|
|
return x_out
|
|
|
|
class MixtureOfDiffusers(AbstractDiffusion):
|
|
"""
|
|
Mixture-of-Diffusers Implementation
|
|
https://github.com/albarji/mixture-of-diffusers
|
|
"""
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
|
|
|
|
self.custom_weights: List[Tensor] = []
|
|
self.get_weight = gaussian_weights
|
|
|
|
def init_done(self):
|
|
super().init_done()
|
|
|
|
self.rescale_factor = 1 / self.weights
|
|
|
|
for bbox_id, bbox in enumerate(self.custom_bboxes):
|
|
if bbox.blend_mode == BlendMode.BACKGROUND:
|
|
self.custom_weights[bbox_id] *= self.rescale_factor[bbox.slicer]
|
|
|
|
@grid_bbox
|
|
def get_tile_weights(self) -> Tensor:
|
|
|
|
|
|
|
|
self.tile_weights = self.get_weight(self.tile_w, self.tile_h)
|
|
return self.tile_weights
|
|
|
|
@torch.inference_mode()
|
|
def __call__(self, model_function: BaseModel.apply_model, args: dict):
|
|
x_in: Tensor = args["input"]
|
|
t_in: Tensor = args["timestep"]
|
|
c_in: dict = args["c"]
|
|
cond_or_uncond: List= args["cond_or_uncond"]
|
|
c_crossattn: Tensor = c_in['c_crossattn']
|
|
|
|
N, C, H, W = x_in.shape
|
|
|
|
self.refresh = False
|
|
|
|
if self.weights is None or self.h != H or self.w != W:
|
|
self.h, self.w = H, W
|
|
self.refresh = True
|
|
self.init_grid_bbox(self.tile_width, self.tile_height, self.tile_overlap, self.tile_batch_size)
|
|
|
|
self.init_done()
|
|
self.h, self.w = H, W
|
|
|
|
self.reset_buffer(x_in)
|
|
|
|
|
|
|
|
|
|
|
|
if self.draw_background:
|
|
for batch_id, bboxes in enumerate(self.batched_bboxes):
|
|
if comfy.model_management.processing_interrupted():
|
|
|
|
return x_in
|
|
|
|
|
|
x_tile_list = []
|
|
t_tile_list = []
|
|
icond_map = {}
|
|
|
|
|
|
|
|
|
|
for bbox in bboxes:
|
|
x_tile_list.append(x_in[bbox.slicer])
|
|
t_tile_list.append(t_in)
|
|
if isinstance(c_in, dict):
|
|
|
|
|
|
|
|
|
|
for key in ['y', 'c_concat']:
|
|
if key in c_in:
|
|
icond=c_in[key]
|
|
if icond.shape[2:] == (self.h, self.w):
|
|
icond = icond[bbox.slicer]
|
|
if icond_map.get(key, None) is None:
|
|
icond_map[key] = []
|
|
icond_map[key].append(icond)
|
|
|
|
|
|
|
|
else:
|
|
print('>> [WARN] not supported, make an issue on github!!')
|
|
n_rep = len(bboxes)
|
|
x_tile = torch.cat(x_tile_list, dim=0)
|
|
t_tile = self.repeat_tensor(t_in, n_rep)
|
|
tcond_tile = self.repeat_tensor(c_crossattn, n_rep)
|
|
c_tile = c_in.copy()
|
|
c_tile['c_crossattn'] = tcond_tile
|
|
if 'time_context' in c_in:
|
|
c_tile['time_context'] = self.repeat_tensor(c_in['time_context'], n_rep)
|
|
for key in c_tile:
|
|
if key in ['y', 'c_concat']:
|
|
icond_tile = torch.cat(icond_map[key], dim=0)
|
|
c_tile[key] = icond_tile
|
|
|
|
|
|
|
|
|
|
if 'control' in c_in:
|
|
control=c_in['control']
|
|
self.process_controlnet(x_tile.shape, x_tile.dtype, c_in, cond_or_uncond, bboxes, N, batch_id)
|
|
c_tile['control'] = control.get_control_orig(x_tile, t_tile, c_tile, len(cond_or_uncond))
|
|
|
|
|
|
|
|
|
|
|
|
x_tile_out = model_function(x_tile, t_tile, **c_tile)
|
|
|
|
|
|
for i, bbox in enumerate(bboxes):
|
|
|
|
|
|
w = self.tile_weights * self.rescale_factor[bbox.slicer]
|
|
self.x_buffer[bbox.slicer] += x_tile_out[i*N:(i+1)*N, :, :, :] * w
|
|
del x_tile_out, x_tile, t_tile, c_tile
|
|
|
|
|
|
|
|
|
|
x_out = self.x_buffer
|
|
|
|
return x_out
|
|
|
|
MAX_RESOLUTION=8192
|
|
class TiledDiffusion():
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {"model": ("MODEL", ),
|
|
"method": (["MultiDiffusion", "Mixture of Diffusers"], {"default": "Mixture of Diffusers"}),
|
|
|
|
"tile_width": ("INT", {"default": 96*opt_f, "min": 16, "max": MAX_RESOLUTION, "step": 16}),
|
|
|
|
"tile_height": ("INT", {"default": 96*opt_f, "min": 16, "max": MAX_RESOLUTION, "step": 16}),
|
|
"tile_overlap": ("INT", {"default": 8*opt_f, "min": 0, "max": 256*opt_f, "step": 4*opt_f}),
|
|
"tile_batch_size": ("INT", {"default": 4, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
|
|
}}
|
|
RETURN_TYPES = ("MODEL",)
|
|
FUNCTION = "apply"
|
|
CATEGORY = "_for_testing"
|
|
instances = WeakSet()
|
|
|
|
@classmethod
|
|
def IS_CHANGED(s, *args, **kwargs):
|
|
for o in s.instances:
|
|
o.impl.reset()
|
|
return ""
|
|
|
|
def __init__(self) -> None:
|
|
self.__class__.instances.add(self)
|
|
|
|
def apply(self, model: ModelPatcher, method, tile_width, tile_height, tile_overlap, tile_batch_size):
|
|
if method == "Mixture of Diffusers":
|
|
self.impl = MixtureOfDiffusers()
|
|
else:
|
|
self.impl = MultiDiffusion()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.impl.tile_width = tile_width // opt_f
|
|
self.impl.tile_height = tile_height // opt_f
|
|
self.impl.tile_overlap = tile_overlap // opt_f
|
|
self.impl.tile_batch_size = tile_batch_size
|
|
|
|
|
|
|
|
|
|
|
|
model = model.clone()
|
|
model.set_model_unet_function_wrapper(self.impl)
|
|
model.model_options['tiled_diffusion'] = True
|
|
return (model,)
|
|
|
|
class NoiseInversion():
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {"model": ("MODEL", ),
|
|
"positive": ("CONDITIONING", ),
|
|
"negative": ("CONDITIONING", ),
|
|
"latent_image": ("LATENT", ),
|
|
"image": ("IMAGE", ),
|
|
"steps": ("INT", {"default": 10, "min": 1, "max": 208, "step": 1}),
|
|
"retouch": ("FLOAT", {"default": 1, "min": 1, "max": 100, "step": 0.1}),
|
|
"renoise_strength": ("FLOAT", {"default": 1, "min": 1, "max": 2, "step": 0.01}),
|
|
"renoise_kernel_size": ("INT", {"default": 2, "min": 2, "max": 512, "step": 1}),
|
|
}}
|
|
RETURN_TYPES = ("LATENT",)
|
|
FUNCTION = "sample"
|
|
CATEGORY = "sampling"
|
|
def sample(self, model: ModelPatcher, positive, negative,
|
|
latent_image, image, steps, retouch, renoise_strength, renoise_kernel_size):
|
|
return (latent_image,)
|
|
|
|
NODE_CLASS_MAPPINGS = {
|
|
"TiledDiffusion": TiledDiffusion,
|
|
|
|
}
|
|
NODE_DISPLAY_NAME_MAPPINGS = {
|
|
"TiledDiffusion": "Tiled Diffusion",
|
|
|
|
}
|
|
|