Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import whisper as openai_whisper
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
from TTS.api import TTS
|
4 |
+
import gradio as gr
|
5 |
+
import torch
|
6 |
+
import os
|
7 |
+
|
8 |
+
# 1. Speech-to-Text (STT) Implementation
|
9 |
+
def setup_stt():
|
10 |
+
model = openai_whisper.load_model("base") # Explicit OpenAI Whisper
|
11 |
+
return model
|
12 |
+
|
13 |
+
def transcribe_audio(model, audio_file):
|
14 |
+
result = model.transcribe(audio_file)
|
15 |
+
print("Transcription:", result['text'])
|
16 |
+
return result['text']
|
17 |
+
|
18 |
+
# 2. Natural Language Processing (NLP) Implementation
|
19 |
+
def setup_nlp():
|
20 |
+
model_name = "gpt2"
|
21 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
22 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
23 |
+
return tokenizer, model
|
24 |
+
|
25 |
+
def generate_response(tokenizer, model, input_text):
|
26 |
+
prompt = f"User: {input_text}\nAssistant:"
|
27 |
+
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
28 |
+
|
29 |
+
response = model.generate(
|
30 |
+
input_ids,
|
31 |
+
max_length=150,
|
32 |
+
num_return_sequences=1,
|
33 |
+
temperature=0.7,
|
34 |
+
top_p=0.9,
|
35 |
+
pad_token_id=tokenizer.eos_token_id,
|
36 |
+
no_repeat_ngram_size=2
|
37 |
+
)
|
38 |
+
return tokenizer.decode(response[0], skip_special_tokens=True)
|
39 |
+
|
40 |
+
# 3. Text-to-Speech (TTS) Implementation
|
41 |
+
def setup_tts():
|
42 |
+
tts = TTS(model_name="tts_models/en/ljspeech/tacotron2-DDC")
|
43 |
+
return tts
|
44 |
+
|
45 |
+
def generate_speech(tts, text, file_path="output.wav"):
|
46 |
+
tts.tts_to_file(text, file_path=file_path)
|
47 |
+
return file_path
|
48 |
+
|
49 |
+
# 4. Voice AI System Class
|
50 |
+
class VoiceAISystem:
|
51 |
+
def __init__(self):
|
52 |
+
print("Initializing Voice AI System...")
|
53 |
+
print("Loading STT model...")
|
54 |
+
self.stt_model = setup_stt()
|
55 |
+
print("Loading NLP model...")
|
56 |
+
self.tokenizer, self.nlp_model = setup_nlp()
|
57 |
+
print("Loading TTS model...")
|
58 |
+
self.tts_model = setup_tts()
|
59 |
+
|
60 |
+
# GPU Optimization
|
61 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
62 |
+
print(f"Using device: {self.device}")
|
63 |
+
self.nlp_model = self.nlp_model.to(self.device)
|
64 |
+
print("System initialization complete!")
|
65 |
+
|
66 |
+
def process_audio(self, audio_file):
|
67 |
+
try:
|
68 |
+
os.makedirs("tmp", exist_ok=True)
|
69 |
+
|
70 |
+
print("Transcribing audio...")
|
71 |
+
text = transcribe_audio(self.stt_model, audio_file)
|
72 |
+
|
73 |
+
print("Generating response...")
|
74 |
+
with torch.cuda.amp.autocast(enabled=torch.cuda.is_available()):
|
75 |
+
response = generate_response(self.tokenizer, self.nlp_model, text)
|
76 |
+
|
77 |
+
print("Converting response to speech...")
|
78 |
+
output_path = os.path.join("tmp", "response.wav")
|
79 |
+
audio_response = generate_speech(self.tts_model, response, output_path)
|
80 |
+
|
81 |
+
return audio_response, text, response
|
82 |
+
except Exception as e:
|
83 |
+
print(f"Error during processing: {str(e)}")
|
84 |
+
return None, f"Error: {str(e)}", "Error processing request"
|
85 |
+
|
86 |
+
# 5. Gradio UI Integration
|
87 |
+
def create_voice_ai_interface():
|
88 |
+
system = VoiceAISystem()
|
89 |
+
|
90 |
+
def chat(audio):
|
91 |
+
if audio is None:
|
92 |
+
return None, "No audio provided", "No response generated"
|
93 |
+
return system.process_audio(audio)
|
94 |
+
|
95 |
+
interface = gr.Interface(
|
96 |
+
fn=chat,
|
97 |
+
inputs=[
|
98 |
+
gr.Audio(
|
99 |
+
type="filepath",
|
100 |
+
label="Speak here"
|
101 |
+
)
|
102 |
+
],
|
103 |
+
outputs=[
|
104 |
+
gr.Audio(label="AI Response"),
|
105 |
+
gr.Textbox(label="Transcribed Text"),
|
106 |
+
gr.Textbox(label="AI Response Text")
|
107 |
+
],
|
108 |
+
title="Voice AI System",
|
109 |
+
description="Click to record your voice and interact with the AI"
|
110 |
+
)
|
111 |
+
|
112 |
+
return interface
|
113 |
+
|
114 |
+
# Launch the interface
|
115 |
+
if __name__ == "__main__":
|
116 |
+
iface = create_voice_ai_interface()
|
117 |
+
iface.launch(share=True)
|