# Install necessary libraries !pip install transformers gradio librosa import gradio as gr from transformers import pipeline # Load models # Sentiment Analysis classifier_sentiment = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english") def analyze_sentiment(text): result = classifier_sentiment(text)[0] label = result['label'] score = result['score'] return f"Label: {label}, Score: {score:.2f}" # Translation translator = pipeline("translation", model="Helsinki-NLP/opus-mt-en-fr") def translate_text(text): result = translator(text)[0] translated_text = result["translation_text"] return translated_text # Image Classification classifier_image = pipeline("image-classification", model="google/mobilenet_v2_1.0_224") def classify_image(image): results = classifier_image(image) output = "" for result in results: output += f"{result['label']}: {result['score']:.2f}\n" return output # Speech to Text speech_to_text = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h") def transcribe_audio(audio): text = speech_to_text(audio)["text"] return text # Text Summarization summarizer = pipeline("summarization", model="facebook/bart-large-cnn") def summarize_text(text): summary = summarizer(text, max_length=130, min_length=30, do_sample=False)[0]["summary_text"] return summary # Define custom CSS styles css = """ """ with gr.Blocks(css=css) as demo: gr.Markdown("