File size: 1,594 Bytes
3ff674d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from pickle import dump
from typing import List

from cohere import Client
from numpy import array

from gossip_semantic_search.models import Article, ProcessedDataset
from gossip_semantic_search.utils import embed_content, CustomUnpickler


class DatasetProcessor:
    def __init__(self,
                 dataset_path: str,
                 saved_processed_dataset_path: str):
        self.dataset_path = dataset_path
        self.saved_processed_dataset_path = saved_processed_dataset_path

        self.processed_dataset: ProcessedDataset = None

    @staticmethod
    def load_dataset(dataset_path: str) -> List[Article]:
        with open(dataset_path, 'rb') as file:
            unpickler = CustomUnpickler(file)
            data = unpickler.load()
        return data


    def process_dataset(self,
                        data: List[Article]):
        client = Client()

        y_true = []
        questions = []
        for i, sample in enumerate(data):
            for question in sample.questions:
                y_true.append(i)
                questions.append(question)

        self.processed_dataset = ProcessedDataset(
            y_true = array(y_true),
            embedded_queries=embed_content(questions, client),
            embedded_context=array([sample.embeded_content for sample in data]))

    def save_articles(self):
        with open(self.saved_processed_dataset_path, 'wb') as f:
            dump(self.processed_dataset, f)

    def run(self):
        data = self.load_dataset(self.dataset_path)
        self.process_dataset(data)
        self.save_articles()